NORTHWEST NAZARENE UNIVERSITY

Quick Triage Tool

THESIS
Submitted to Department of Math and Computer Science
in partial fulfillment of the requirements
for the degree of
BACHELOR OF SCIENCE

Parker Bartlow
2024

THESIS
Submitted to Department of Math and Computer Science
in partial fulfillment of the requirements
for the degree of
BACHELOR OF SCIENCE

Parker Bartlow
2024

Quick Triage Tool

Author: /fmjbﬂ %aﬂ@/uu

ker Daniel Bartlow

Approved: Mﬁ? Mﬁliw

Barry Myers, Ph.D., Professor,
Department of Mathematics and Computer Science, Faculty Advisor

Approved: ///[Lm/l/ ///]A_/w_[a1

Mark Michaelson, M.A., M.Ed., Assistant Professor, Department of
Academic Services Second Reader

\‘-L H’l'l-h e e e

Approved:

Dale Hamilton, Ph.D., Chair,
Department of Mathematics and Computer Science

Abstract

Quick Triage Tool.
BARTLOW, PARKER (Department of Mathematics and Computer Science),
MYERS, DR. BARRY (Department of Mathematics and Computer Science).

Hewlett-Packard (HP) LaserJet printers undergo rigorous quality testing to confirm they
arereliable and efficient before they are sold to the public. Much of the LaserJet
firmware testing is automated, producing thousands of failure logs daily. The process of
analyzing logs to determine the failure type (triaging) was manual, |eading the sheer
magnitude of failures to outpace the capabilities of the people responsible for diagnosing
them. This project aimed to automate parts of the triage process so that time and effort
could be better allocated. The Quick Triage Tool isafull-stack tool that consists of a
MongoDB database, C# middle logic, and aVue.js front-end website for database
management. From the front-end, users create objects called rules which contain
symptoms and represent failure types. Firmware test failure log files are automatically
searched against the database of rules, finding failure types when al rule symptoms are
matched and displaying results on acommon internal website. The automation of the
triage process saves time by eliminating manual triaging and by preventing redundant
triage efforts. Automation also increases confidence in quality metrics. Lastly, the
aggregation of failure types allows failure prioritization, which increases test passing
rates and ultimately firmware quality.

Acknowledgements

| would like to thank my project mentor for his guidance, expertise, patience, and
encouragement throughout the time | worked on this project. | would also like to thank
my technical mentor for his help learning new programming frameworks and
technologies. | would like to thank my manager for guidance and perspectivein
navigating the professional workforce of my field for the first time. | would also like to
thank the other intern that helped in this project for her teamwork and leadership during
my first summer. Lastly, | would like to thank my dad for helping me navigate the HP
Inc. culture and hel ping me process the amount of new information | was learning and the

challenges | was facing.

Table of Contents

LI L= 2 N i
Committee Signature PAgeccciivuiiiiiiiiiniiiiniiiinieiinieieniniseieiesisissenssssesensssssnssssnnss i
2N <1 o Y iii
LN 1y Lo TN LT F= =T 4 =T 4 iv
LiSt Of FIBUIES ...iiveeeeeeeiiiiiiiiiiininiiiiininineeenssssessnsiinesssssssssssssnsesssnsssssssssssnsssnnsssssssss vii
3o o 11] T 1
PrOJECE OVEIVIEWcooiiiiiiiiiiiiiie ettt ettt et s e et e e e e s s sttt b e e e e e s s sasanbtaaeeeesssaassreeaeeens 1
BACKBIOUN ...ttt e e et e e et e e e e s abe e e e sabaeeessbeeeesnsbeeeeennreeas 1
=T (VLT =T 4 0 1=] £ SRR 2
CONSTIAINES ...ttt et e e s s e e e s b e s n e e e s e e e s reeesnreenane 3
QUICK Triage TOOI DESIZN ...ccuuiieeuirrenirreniereanertenerenseereaseerensessassessnsessassessnsssssnsesssnsesannes 4
Requirements Gathering.................ooo i e e e e e e atee e e e nbae e e e areeas 4
TRE RUIE ...ttt ettt b e s bt e s ae e st e et e e be e s bt e sbeesaeeeaeeenbeenbeesbeesanenas 4
RUIE DAtabase.oocuiiiiiiieiieee ettt ettt ettt st b e re e s reesaee e s 5
Rule Manager WEDSIte............cooouiiiiiiiiie ettt s e e s bae e e s abae e e e areeas 6

RV 8= PPN 6
VIBW ottt et e s e e s s e e s r e e e s e nrenes 7

L0 == | PPN 8

TOSE e 9
QUICK THIAaB@ TOOI APL ... e et e e et e e e e et te e e e s baeeeeebtaeeesnraeaeannes 11
%Yol 1 =¥ Vo I STV oo To T F=1 L Y2 SRR UURURRNt 11
=TT el a1V =4 Ko Y= oSSR 13
Integration With TeSt SOUINCE 1coeiiiiiiiee e e erae e e 15

LT 011 1T o = SRPN 16
DiSPlAYING RESUILS. ..eeeeeeieieiiie it e e e et e e e e e e e st e e e e e e s e e nabaraeeeeeeeesannrenns 17
REtroactive RUIE TESEINGuviiiiiee ettt e e e e e e e e e e e s be e e e e e e e e e sennnnnns 19
Integration With TSt SOUICE 2............oiiiiiiiie e s 20
WOTKEIOW ...ttt ettt e b e s b st e aeeen e et e e sbeesbeesane e 20
Presenting and USer GUIEooooiiiiiiiiiii it rtae e e e e e e e eatae e e 22
00 0 1o 11 o T 23

FUBUPE WOTK ...ttt ettt et et st be e 24
REVIGW ...ttt ettt st e e e e e s st e s s ne e e s s b e e e s e nr e e e s e nre e e e s nreee e e nnneeas 25
3= =T =T o o 26
Appendix A: Quick Triage Tool User GUIde.......ccceeiiirrnniiiinnniiiiieniiniinneeenes 27

Vi

List of Figures

Figure 1. Rule ODJECt SEIUCIUIEeee ittt e e e e eeaas 4
Figure 2. Rule Manager WEDSITE VIBWvvieitiie e ceee e eeaes 8
Figure 3. Rule Manager WEDSITE: Createouvvuiniieeiniieeee e 9
Figure 4. Rule Manager WEDSITE: TESEvuieiiiiie i 10
FIQUIE 5. AXIOS Call ..vineeieiii e e 12
Figure 6. L ookupDictionary SITUCLUFEevieieiiiteieet e et e e eneees 13
Figure 7. RuleList Dictionary SIrUCIUIecoovieiiiiiie e 14
Figure 8. NOFIYLISt SITUCIUIE .. . vt 14
Figure 9. Test SOUrce ONE PIPEliNEouiniieiii e 17
Figure 10. Test Source One: Display Individual ResUItSocvviiiiiiiiiniiiinns 18
Figure 11. Test Source One: Display Agaregated ResUltSovvvveiiiiiiiiiiinnnn, 19
Figure 12. Test Source Two Integration Web Pageccoevviiiiiiiiiiiiiiieenn, 21

Vii

Introduction
Project Overview

The Quick Triage Tool provides functionality to automatically determine the
reasons for firmware test failures once those reasons have been previously discovered.
Thetool is based on the idea of custom rule objects and consists of aVue.js front-end
website, a MongoDB database, and custom C# searching logic. Rules contain the
information necessary to match failed test logs with failure types and are created, edited,
tested, and deleted from the Vue.js front-end website. The tool is integrated with two

sources of test failures, outputting results to two different locations for the user to see.

Background

One of the many lines of products that HP (Hewlett Packard) Inc. makesisthe
printer. HP Inc.’s Boise site is the primary location for the business behind and design of
the company’s LaserJet Printers. Both The New York Times and U.S. News has an HP
LaserJet printer as their top laser printer of 2024 (John, 2024; Keough & Wells, 2024).

One of the ways HP Inc. upholds this standard of quality is by rigorous automated testing.

Firmware, the code that runs on the printer’s specialized computer, goes through
daily automated testing, and produces three thousand to five thousand failed tests each
day. Engineers and programmers use this failure information to fix issues before products
ever reach customers, ensuring the delivery of high-quality, reliable printers. However,
each test failure produces nearly 30 text fail logs, which are files full of obscure and
highly technical text strings. These files constitute one failed test bundle and are stored in

a.zip file. Specialized programmers, who, for the remainder of this paper will be referred

to astriagers, know what areas of these filestypically contain the type of test failure and

manually search through and analyze the fail logs to determine why the testsfail.

With thousands of daily test failures, thereis no team large enough to manually
triage every test failure. This old system leads to severa problems. Thefirst isthat many
test failures are not analyzed each day, meaning if the test’s reason for failure is unique, it
will not be caught by triagers. A second problem isthat since many tests fail for the same
reasons, redundant effort is spent rediscovering the same failure types. A third problem
arises when atest startsfailing for a different, more serious reason than it previously was
failling with. In this case, it will not be caught as the test will be assumed to be failing for
the same reason it previously was. All of these problems lead to inefficiency in the

triaging process and ultimately lower firmware quality than what is possible.

Requirements

To solve this problem, atool, later called the Quick Triage Tool, was proposed
that would automate the triaging process for firmware test failures. For automation to
work, there needed to be away to create and store symptoms of test failure types that
have been discovered by triagers. Then, if symptoms of atest failure can be matched in

the test failure log files, the failure type can be known without redundant manual effort.

Thistool also needed to work with test failures produced from the two different
firmware testing sources HP Inc. uses. Both test sources organize fail logs differently and
provide unique challenges to integrate with the Quick Triage Tool. Lastly, results from
the automated triaging must be displayed in a meaningful way to triagers and other

relevant employees.

Constraints

HP Inc. employeesin firmware lacked the bandwidth to devote significant time to
developing atool such as the Quick Triage Tool, so the responsibility was given to
interns. This meant that work must be completed within the summer internship window,
from late May to early August. Additionally, there were cross-team dependencies with an
HP Inc. team located in India. This meant that there were small windows of time that both
parties were working at the same time, and that much email communication passed

through half-day buffers, delaying the speed of progress.

Quick Triage Tool Design
Requirements Gathering

The project mentor had the best understanding of the requirements and goals of
the tool. A technical mentor was also available that had more knowledge of the specific
frameworks and technol ogies that were being used. Weekly meetings with these two
individuals provided ample space for updates, questions, and additional requirements.
The project mentor served as a bridge between the users of the tool, triagers, and the

developers of thetool, the interns.

TheRule

A ruleis a custom object that represents atest failure type. Rules contain
symptoms which are used by the Quick Triage Tool to match to the contents of the fail
logs from atest failure. The structure of the rule object is as follows:

name (String)

dateAdded (DateTime)

description (String)

lowPriority (Bool)

symptom (List<custom Symptom object>)

logfile (String)
searchString (List<String>)

Figure 1. Rule Object Structure

The name of each rule should sufficiently name the test failure type that rule
represents, usualy in the form of the error code. The dateAdded attribute is automatically

populated upon the creation of the rule using the built in DateTime.Now constructor. The

4

description of each rule should provide any additional information about the test failure

type past just the name of it.

The lowPriority attribute is used only when two or more rules are matched to a
test failure’s log files. This, in practice, means that the tool found multiple possible
reasons that the firmware test failed. However, if one matched rule has a true value for
lowPriority, then the other matched rule is deemed more important and chosen as the true
failure type. Thisis most often used for failure types that involve the testing framework

itself, such as aloss of emulator power.

Symptoms are an additional custom object that are nested within the greater rule
object. To find the type of test failure, certain error codes or other text strings must be
found in specific log files from that failed test. Each symptom contains the name of a
logfile and alist of the text strings that should be found in that logfile. Each rule has alist
of symptoms, as sometimes multiple matched symptoms are required to determine the

type of test failure.

Rule Database

Once atriager manually determines the failure type of afalled firmware test, a
rule can be created to represent that failure type, and then used to automatically discover
al recurrences of that same failure type. Naturaly, this requires that rules be stored

somewhere once created.

MongoDB isa NoSQL database, meaning it is less structured and rigorous than
its SQL database counterparts (What is NoSQL ?, 2024). MongoDB was chosen as the

database to store rules because of the complexity of the rule object and the resulting

simplicity in database operations with those rules objects. HP Inc. also aready had an
existing MongoDB server that was easily able to be utilized for this tool. NoSQL
databases handle complex objects well, as each item in the database retains the structure

of the object stored in it without much additional programming overhead.

Rule Manager Website

Rules represent test failure types, and they can be stored in the MongoDB.
However, there must be some way to perform operations on these rules, such as viewing
them, creating, deleting, or editing them, and even testing them. To avoid triagers directly
accessing the database through a MongoDB application, the creation of a website was
chosen as the method of database management. This websiteis hosted on aloca HP Inc.
server, limiting access to employees only. The website, plainly called the Quick Triage
Rule Manager, consisted of multiple tabs and tools that allowed users to manage the rule

database.

Vuejs

The rule manager website was built utilizing the Vue.js framework, an open-
source JavaScript user-interface framework that aids and helps organize web page design
and functionality (Vue,js, 2024). Many other frameworks could have been used, but this
framework was recommended by the project’s technical mentor. The best and most
utilized features that Vue.js provided were reactivity and component-based architecture.
For reactivity, Vue.js uses data binding, meaning that when users changed underlying

data such as table data, the table would reflect those changes without requiring arefresh

of the website. The component-based architecture was the most helpful Vue.js feature, as

it made user interface (Ul) creation and interaction much easier.

Custom components such as the “Test” component can be reused throughout the
JavaScript front-end, preventing the need for duplicated and redundant code. For
example, since the testing functionality can be accessed from either the testing page from
the navigation bar or the individual rule itself in the “View and Manage Rules” page, the
component is simply created once and imported to both of those web pages. This
modularity increases readability, efficiency, and consistency between web pages. When
components are nested and reused, there are child and parent components. Sometimes
data must be passed from one component to the other, and Vue.js handles this through the
prop object. This provided framework saves a significant amount of manual JavaScript

labor. Functions of the rule manager website are listed bel ow.

View

To view the current rules in the database, users select the “View and Manage
Rules” page on the website’s navigation bar. This page contains atable that pulls the data
from each rule in the database and displays the most basic information about the rules:
name, data added, and description. Each row corresponds with one rule, and each has

four action buttons: edit, delete, information, and test. See Figure 2 below.

= QuickTriage

Rules -

Name D1a!e Addedyy Description Actions

-_ 7/28/2023 IP fax Simulator failed to launch ” e
_ 712712023 Emulator Command Error: Error: tray1_50 does not s 10
support ... ¥
— 7/26/2023 Either Navigation failed or taking long time /’ Teo
[) 7/13/2023 Error Code=0x00 (D 710
¥
- O 7/13/2023 does not match expected CRC ,’ ieo
A t.AreE | failed. E ted:<U ked>. Actual: 2 |
m 711312093 ssert.AreEqual faile: xpecte nmarke ctual VB)
<Mark... ¥
Missing file a8 |
- T o — Chie

Figure 2. Rule Manager Website: View

The first action button, “edit”, allows you to edit individual attributes of any
specific rule, and the second, “delete”, allows you to delete a rule completely. The latter
may be done if anincorrect ruleisfound or if that failure type no longer appliesto the
current firmware testing methods. The third action button, “info”, shows a popup with all
the rule’s attribute values, adding lowPriority and all symptom information. Lastly, the
fourth action button, “test”, brings you to the test functionality of the website and
automatically uses the rule whose “test” button the user clicked on. Testing will be

described in greater detail in afollowing section.

Create

The “Create” web page is devoted to rule creation and can be accessed by either

the navigation bar or the red plus from the “View and Manage Rules” page in Figure x.

From here, users can add any number of symptoms to their rule, but accuracy and

correctness is heavily emphasized. See the empty “Create” page in Figure 3 below.

= QuickTriage

Create

Description

0 Low Priority -- This Rule will be ignored if multiple rules match with the same file. Most rules should
NOT be low priority.

Symptoms

ADD SYMPTOM +

SUBMIT

Figure 3. Rule Manager Website: Create

Test

Rather than relying on each user’s comprehensive and perfect knowledge of all
failure types, arule testing functionality is provided to ensure rule correctness and
accuracy. The “Test” web page can be accessed either from the navigation bar or from the
“View and Manage Rules” page. The testing functionality requires two inputs from the
user: the path of afailed test bundlie and the rulel D of the rule that is being tested. Idedlly,

once atriager discovers a new failure type, they would create arule to catch that failure,

then test it here. They would input both the rulelD of their newly created rule and the
path of afailed test bundle that they have manually confirmed to fail for the reason stated

by their rule. See Figure 4 below for the “Test” page.

Test a Rule

This will run a more advanced search and show you what parts of your Rule match with the log file and what parts do not.

Log File Path

Rule ID

TEST ¥

Strings Found:
Strings/Logfiles Not Found:

Rules that Match this Lodfile (if any):

Figure 4. Rule Manager Website: Test

Below the test button, there are three categories of results from testing arule. If a
ruleisnot correct, it is because not all of its search strings within its symptoms were
found in the log files. The first category, “Strings Found:” provides which of the tested
rule’s search strings were correctly found in the log files. The second category,
“Strings/Logfiles Not Found:”, provides which of the search strings were not found in the
log files. Lastly, the third category, “Rules that Match this Logfile (if any):” provides the

names of any additional rules that successfully fully matched with the failed test bundle.

10

Thislast result is helpful because the goal for the Quick Triage Tool isfor each
test failure to only match with asingle rule. Thistesting information provides the user
with enough information to see which parts of their rule are incorrect and if there are
other rules that match, either because another user created arule for the failure type

already or other rulesin the database are incorrect themselves.

Quick Triage Tool API

The Vue,js front-end JavaScript website on its own does nothing, as something
needs to operate in between it and the rule database to handle the commands and transfer
of data. This middleware is called an application programming interface (API), which
connects the front-end and the back-end (Frye, n.d.). The Quick Triage Tool’s
implementation, the Triage RulesAPI, uses the REST API (Representational State
Transfer Application API) architecture provided by ASPNET and iswritten in C# (What
iISASPNET?, 2024). ThisAPI aso handles the searching logic that matches rules to the

log filesfound in failed test bundles.

Back-End Functionality

The REST API architecture is based on standard HTTP (Hypertext Transfer
Protocol) methods GET, POST, PUT, and DELETE. Like other architectures, REST API
uses unique URL (Uniform Resource Locator) endpoints for API functions. Additionally,
REST API isaclient-server architecture, which alows users to connect to the website
(server) from their own devices (clients) over anetwork. ThisAPI is hosted on alocal HP

Inc. server that is on their private network.

11

Vue,js front-end operations discussed previously, such asthe test arule
functionality, send an HT TP request to the API through a button press. A client module
called Axios was installed to the front-end and allowed for easy HTTP requests that used
the API URL endpoints to connect (Getting Started. Axios, 2024). For example, when a
user presses “Test”, a JavaScript event-handler isfired off and sends an axios.get()
request to the API’s test endpoint, which is roughly of the form <IP

address>/TriageRulesAPI/rules/test. In code, this may look like Figure 5 below.
return axios.get(¢${IPAddress}/TriageRulesAPI/rules/test

Figure 5. Axios Call

The axios client sends the packaged HTTP GET request to that API endpoint, and
as long as the HTTP method matches the GET request (APl method isaHTTP GET

method), the request will successfully start up the correct APl method.

The Triage Rules API also needs to be able to communicate directly with the
MongoDB that the rules are stored in. For example, when userstry to delete arule on the
rule manager website, the Axios request connects to the corresponding Triage Rules API
endpoint, which then needs to contact the MongoDB and delete the specified rule.
MongoDB provides adriver that can be installed to .NET applications to contact a
MongoDB. The Triage Rules APl uses the Rules MongoDB connection string to connect

and verify the validity of the connection request.

12

Searching Logic

The Triage Rules API is not only responsible for handling requests between the
rule manager website and the Rules MongoDB, but also houses the searching logic that
matches rules to failed test bundles. The hierarchy and logic behind the searching

operation isrelatively complex, so this next section will go into it in depth.

The overall order and hierarchy of searching starts with the .zip file that houses
the failed test log files. These log files are iterated through one at atime. Each time alog
file is opened, it needs to be searched against the rules in the database at the time to look

for matches.

However, there are several considerations and optimizations that speed up the
brute-force nature of this approach. First, once the rule datais pulled from the database, a
new dictionary called LookupDictionary is created with log files as the key. For each
dictionary entry and log file key, there isalist of SearchData objects, each containing a
rule ID and the corresponding search strings that should be found. See Figure 6 for the
LookupDictionary structure.

Key: logFile (string)
Value: List<SearchData>
SearchData

ruleID (string)
List<searchString (string)>

Figure 6. LookupDictionary Structure

Thisis adifferent organization than previous methods, where each itemisarule,

and each of those rules could have multiple log files associated with them. Now each

13

item is alogfile with the possibility of multiple rules associated with them. This means
that if one rule has two symptoms (search strings to be found in two separate log files), it

would be present in two LookupDictionary entries.

The result of this reorganization of datais that the program knows every relevant
symptom of the entire rules database that needs to be searched for in agiven log file.
Returning to the previous genera order of the search, the program looks at one log file at
atime. Upon looking at alog file, the LookupDictionary is searched for an entry with the
key equal to that log file. If oneisfound, thelog file is opened, and the SearchData
objects areiterated through. Log files are not opened if there are no relevant symptoms to
be searched for in it, which speeds to process up asfile opening is slow. Thisway, every

rule that has a symptom in thislog file is being searched for.

This brings up the next two new data structures, called the RuleList and
NoFlyList. The RuleList isadictionary used to keep track of whether arule has been

matched to atest failure bundle or not. The RuleList structureisin Figure 7 below.

Dict<key: ruleID (string); value: bool>

Figure 7. RuleList Dictionary Structure

All rulesin the rule database are listed here, and all values start with the value
true. Once a search string is not found in alog file, the corresponding rule ID in RuleList
for that search string (found from the SearchData object in that LookupDictionary entry)

is set to false because if even one search string is not present where it should be, the rule

14

is not amatch. The next step involves the use of the NoFlyList, which takes the form of

Figure 8 below.

List<ruleID (string)>

Figure 8. NoFlyList Structure

Once asearch string is not found and the RuleList entry for that ruleis set to false,
that rulelD is added to the NoFlyList. While the search iterates through SearchData
entries, the search strings are only searched for in the log filesif the correspond rulelD is
not found in the NoFlyList. Once a rule’s search string is not found, the corresponding
symptom cannot be found, and there is no need to search for that rule’s other symptoms.

This increases the speed of the search and eliminates redundant searches.

RuleList contains the final results of a search, and a method called GetTopRule
iterates through the RuleList entries that have valuestrue. It will return the matched rule
(with RuleList value true) that has alowPriority value of false. If thereis more than one
matched rule with lowPriority false, arandom matched ruleis returned, but thereisa
mistake in the structure of the rules which can be fixed through rule testing on the rule

manager website.

Integration with Test Source 1

The tool functionality is present, however, a pipeline or workflow needed to be
created to automate the flow of test failures into the tool’s searching logic. The first
source that test failures were produced from was simpler to integrate with the Quick

Triage Tool, so the pipeline that was created functioned completely automatically.

15

Pipeline

Because the production of test failures may outpace the speed of the Quick Triage
Tool at any point, the consumption of test failure bundles by the tool had to be
asynchronous, but also needed a queueing ability. RabbitM Q (Rabbit Message Queue) is
software that performs just these functions (RabbitM Q: One Broker to Queue Them All,
2024). RabbitMQ was already utilized by HP Inc. and hosted on an internal server. A new
queue called Triage was created for this project, and the project’s technical mentor
connected the first test source with this queue. When firmware tests failed from this first

test source, the failure bundles were sent to the Triage RabbitM Q queue.

This queue required the creation of a separate program called
QuickTriageListener, which was a simple C# script that is continuously ran on the same
common server asthe APl and is accessed viaa virtual machine (VM). This script uses
the RabbitM Q.Client library to enqueue afailed test bundle from the Triage queueif it
has received an acknowledgement from the Triage Rules API that its resources are
unused and available. The QuickTriagelListener sends failed test bundles to the Triage
Rules APl for processing and searching, and once the API has finished, it sends
acknowledgement back to the Listener so that it can enqueue its next failure bundle. If
thereis an unusually large volume of failure bundles, this queueing system ensures that
the API is not overloaded and that all failure bundles are processed accordingly. See

Figure 9 below, which is aflowchart for the test source one pipeline.

16

MongoDB
Rules
Database

Rule
Manager
Website

Manual

Pipeline Rules API
= Backend Rule
Manager
= Fail Log Searcher

J
o RabbitMQ QuickTriage
e Fail-Log Queue Listener

Figure 9. Test Source One Pipeline

@ Results

Database
Test: Rule Name

Displaying Results

Firmware test data has been displayed on an internal HP Inc. website for quite
some time, so the natural solution to where to display the matched rule results from our
tool would be thiswebsite. The HP Inc. team in Indiaruns thisinternal website, so the
task required direct communication and cooperation with them, resulting in a new API

endpoint they created on their website’s API for our tool to send results to.

The internal firmware testing website already contained tables where each row
corresponded to a firmware test. The HP Inc. India team’s solution was to add an extra
column to thistableto list and link the rule that matched the test (if any). See Figure 10

below.

17

Last Consecu tive
Start Test Last Latest Note Rule
Name Assembly Tier Time Status History Failures Product.ProductSKU.DeviceConfig Revision Logs Requestor Commitid Note Date Name

I
2023-07- SFail
05
18:53:15

2 2023-07- | al o 8
2 53’”7 s N
18:23:45

2023-07- [Fail - 6 2553895
P nnn *

- 8
mnnnan

2553895 Logs -

20:35:40

a
*

2023-07- [Fail LR TITIT] 6

18:17:55

2 2023-02- | Fal 616 2553475 L - - ePrint da
' = 52’3 Fail mnnnRRnEIn 2 5 / - ;
18:10:02 te

Figure 10. Test Source One: Display Individual Results

Triagers can use this table to find which firmware test failures do not match with
rules, download the failed test bundle, and manually determine the reason for the test
failure. Upon manually diagnosing the failure type, they can create anew rule to catch

that failure, test it, and eventually see that result on the internal website.

Matched rule results from the Quick Triage Tool aso contributed to a completely
new table the HP Indiateam created on the internal firmware testing website. In this
table, each row represented arule, which represents atest failure type. This table
aggregates occurrences of rule matches, which provides crucial and invaluable
information that will be discussed in the conclusion of this paper. See Figure 11 below for

the aggregation table.

Test Failures Mapping Summary ar

Products (@Platform

Issues

Name Description Found

_ The test did not complete. May not actually be a test timeout due to a previous test executed in 607
the test track timing out.

CGEEENEE® Test failed for some Ul piece. Please look at the screen shot to see if it gives any clues astowh 441
- at was causing the failure to occur. 1) sometimes message center is up or a tray loading prompt
will stop the flow of the test 2) did an icon that was expected to change, didn't become available
3) did the Ul flow change by a recent code commit. This one isn't likely. If this is intermittent, ask
yourself what timing am | really dependent upon for this test

— Test failed with exception: The master file was not found. 380

L A connection attempt failed because the connected party did not properly respond after a perio = 172

d of time, or established connection failed because connected host has failed to respond 192.1
AR 1

Figure 11. Test Source One: Display Aggregated Results

Retroactive Rule Testing

With this automated pipeline, there is one large problem that can occur.

Automated firmware tests execute regularly, but at different intervals. Some tests may

only execute once every two weeks, for example. Consider atwo-week test that fails and

doesn’t match with a rule. A triager may analyze it the next day, determine the new

failure, and add a new rule to the database to catch it. However, it will be nearly two

weeks before the test runs again with the new rule matching it and getting displayed. This

significantly delays the speed at which firmware problems are found and fixed.

To counteract this problem, retroactive rule testing was implemented. A short C#

script was created that sent an HTTP request to the Triage Rules API’s searching logic

method to retrigger it. First, however, the most recent test failure bundles had to be pulled

19

from the network file share. Normally, failure bundles were sent to the Triage queue upon
failure, then sent to the API. But, with this retriggering, the searching logic still needed
access to the most recent failure bundles for each firmware test. The HP Inc. team in
India provided a URL to access the most recent test failure bundles and their
corresponding matched rule from our tool (if it exists). Next, this script was set to run
twice aday by utilizing Windows Task Scheduler. Thisway, if there are any changesin
failures for tests with along interval between executions, they will be known within
twelve hours at the most. New retroactive search results are only sent to the results
website if the matched rule is different than the previously matched rule for afailed test

bundle.

Integration With Test Source 2

The second test source for automated firmware testing is much more complicated.
An automated integration of the Quick Triage Tool and this second test source would
reguire much more time and resources than were available for thisintern project. Instead,
a manual workflow was implemented to leverage the Quick Triage Tool’s capabilities

with the second test source.

\\or kfl ow

Since there was no realistic way to automate the pipeline of failed test bundles
from the second test source to the Quick Triage Tool, it was decided to add a page to the
Rule Manager website. This page contained a manual integration with the second test
source, requiring. Failed test bundles from the second test source are also stored on the

same network file share as the first test source, but the file hierarchy differs. The same

20

level of file path asthe first test sourceresultsin a.zip file full of .zip files that each
contain the log files that constitute a failed test bundle. This additional layer was handled
through some simple file extension checking using both the Directory and Path classesin

C#’s provided System.IO library.

The new web page on the rule manager website is dedicated to searching failed
test bundles from the second test source manually. There isinput for the user to enter the
path of a.zip of failed test bundles, then a button to begin the searching process. The
search uses the same searching logic from the Triage Rules API as the test source one
pipeline. See Figure 12 below to see this additional web page along with its results from a

search.

= QuickTriage

Search{l Triage Zip Folder

This will run a search against existing rules for a@@iob. outputting results in the table below.

SEARCH Q

R nooo
O Cashion @

Figure 12. Test Source Two Integration Web Page

21

Firmware tests that execute from the second test source are not included on the
same interna firmware testing website, so Quick Triage Tool results had to be displayed
elsewhere. Since .zips from the second test source included several failed test bundle
.Zips, the search logic runs multiple times and finds a matching rule for each inner .zip
failed test bundle. These results populate a table component on the web page. This table’s
first column has the path of each failed test bundle, and the second column contains the
rule that matched, if any. Users can download a CSV containing the table data to their

own machine since there is no existing common website to share this data.

By searching a .zip full of failed test bundles, atriager can see which bundles did
not match with arule. At that point, the triager can download the failed test bundlie to
their machine by clicking on the path in the left column. Once they have manually
discovered the failure type of that failed test, they can add arule to the database and re-
run that search to see if arule now matchesit. While this workflow involves more manual
work than the pipeline of test source one, it still greatly improves the efficiency of the

triaging process.

Presenting and User Guide

Once the Quick Triage Tool was in aworking state, the tool had to be marketed
and taught to the triaging team, which islargely based in India. A user guide PowerPoint
was created that walked through the new, refined triaging process step-by-step. This
PowerPoint was explained to the team over Zoom but is comprehensive enough by itself
to guide atriager to the correct use of the tool. The PowerPoint itself was put on the
team’s SharePoint site so that they could reference it as they learned the tool themselves.
See Appendix A for aredacted version of this user guide.

22

Conclusion
I mpact

The Quick Triage Tool is a comprehensive and multi-faceted tool, but itsimpacts

can be summarized into three areas.

Thefirst impact of thistool is that it eliminates the need to spend effort and time
rediscovering previously known failure types. Once afailure type has been manually
discovered, the Quick Triage Tool will discover every subsequent occurrence of the same

failure type automatically.

The second impact of thistool isissue prioritization which is possible through the
aggregation of rule match occurrences by the HP Inc. team in India. Employees
responsible for fixing firmware issues can prioritize which issues to fix first by which
rule has the most matches to firmware test failures. Once higher-prioritization issues are

fixed, the number of failed firmware tests dramatically decreases.

The third impact of this tool is that it improves the company’s confidence in their
guality metrics. In the previous manual triaging workflow, once atest failure type was
found, that was assumed to be the reason for failure for every subsequent failed execution
of that test. However, the reason that a firmware test fails can change between test
executions, especially to amore harmful failure type. The old system would not catch this
change, however, through the automation of the Quick Triage Tool, it would either return
arulefor the new test failure reason, or not return arule a all because the failure typeis

new. This means that test passing and failing rates are now more accurate, and the

23

company’s list of ongoing firmware issues and their prevalence should also be more

accurate.

All of these impacts and features of the tool fall under two broad improvements.
Because of the new, efficient, and expedited process, the Quick Triage Tool ultimately
increases printer firmware quality. The effort of triagers can be better allocated to
discovering new failures, and resources can be better spent on tackling the most prevalent
and pressing issues first. Along with increasing printer firmware quality, the Quick Triage
Tool aso ushersin quality-of-life improvements for triagers, especially because
redundant work is eliminated. The firmware testing triage process has been completely

upgraded and refined.

Future Work

The Quick Triage Tool could be improved by adding automatic integration with
the second test source. The current manual integration works well but is slower than the
automatic pipeline that exists for the first test source. Additionally, the prioritization
benefits of the aggregation of matched rules are not available in the manual second test
source integration. Thiswould be a major advantage if there was an automated pipeline

from test source two to the Quick Triage Tool.

HP LaserJet printers are in the process of transitioning to a new codebase based in
C++ instead of C#. With this change, the firmware testing process will change. The
current Quick Triage Tool pipelines would no longer work, but the logic behind the tool
can be universally applied, so anew version of the Quick Triage Tool could be made to

work with the new codebase. The benefits of the tool are too good not to leverage.

24

HP Inc. uses bug-tracking software to track progress on firmware issues that are
in progress of being fixed. Future work could include integration of this bug-tracking
software with rules, so that employees can see how close the failure type a rule represents

isto being fixed.

Lastly, more effort could be spent to market the Quick Triage Tool to encourage
greater use amongst triagers and other departments. The tool works the best when
everyoneisusing it and making rulesto cover all new failure types. At the presentation of
thistool, several separate departments outside of firmware took great interest, wondering

if similar tools could be made for the testing they perform.

Review

The Quick Triage Tool isatool created to automate the process of discovering the
faillure types of failed firmware tests. The tool is based on a custom object called arule
that represents test failure types. It involves aVue.js front-end website to manage the
rules which are stored in aMongoDB database. The Triage Rules APl connects the two,
along with housing the searching logic to match rulesto failed test bundles. An
automated pipeline exists to pull failed test bundles from one test source, run them
through the tool, and display results on an internal website. The second test source has
manual integration with the tool. The Quick Triage Tool significantly improves the

efficiency of the triaging process, ultimately leading to higher printer firmware quality.

25

References

Broadcom. (2024). RabbitMQ: One broker to queue them all. RabbitM Q.
https://www.rabbitmg.com/

Frye, M.-K. (n.d.). What is an API?. MuleSoft.
https://www.mul esoft.com/resources/api/what-is-an-api

Getting started. Axios. (2024). https://axios-http.com/docs/intro

John, S. (2024, February 1). Best laser printers of 2024: Expert picked | U.S. news. U.S.
News & World Report. https://www.usnews.com/360-reviews/technol ogy/best-

|aser-printers

Keough, B., & Wdlls, K. (2024, April 1). The best laser printer. The New Y ork Times.
https://www.nyti mes.com/wirecutter/reviews/best-laser-printer/

Microsoft. (2024). What is ASP.NET?. Microsoft .NET. https://dotnet.microsoft.com/en-
us/learn/aspnet/what-is-aspnet

MongoDB. (2024). What is NoSQL?. MongoDB. https://www.mongodb.com/nosql -
explained

Vue,js. (2024). https.//vuejs.org/guide/introduction.html

26

Appendix A: Quick Triage Tool User Guide

Quick Triage Tool
User Guide

Outline

* Purpose

* Process Overview/Review
* (1) Rule Manager Website
* (2) Test Source 1 Process
* (3) Test Source 2 Process

27

Purpose

* The Quick Triage Tool (QTT) automates some of the triaging workflow, making
your job easier!

* By keeping track of discovered failures and having an automated searching
system, you don’t need to spend time rediscovering known failures.

* Allows you to spend your time finding unique failures.

Process Overview

The Rule Manager website allows you to manage a database of rules.
* Rules are custom objects that represent failures (ex. _crash)

* Failed firmware test logs can get sent through the QTT and searched against this
rule database, returning the matched rule for the failed test run.

* For Test Source 1, the process is automated. You only create rules based on what
you see from the results website, and the results are output on the results
website.

* For Test Source 2, you’ll need the path of a failed test run on the network share
as input to make the search happen, and the results output as a table on the Rule
Manager Website.

28

1. Rule Manager Website (1)

This section is a walkthrough of the QTT Rule Manager Website and its functionality.
Please refer back to this section when reading about the Test Source 1 and Test Source

2 processes. website URL: http: RuleManager/#
I D
- &]

Welcome to the QuickTriage Rule Manager

As a general note, when
navigating popups, use
the ‘CLOSE’ buttonin
cLOSE the bottom right-hand
corner instead of the
browser’s back arrow.

Rule Manager Website (2)

Rule: a custom object representing a failure type (ex. _ crash, CRC does not
match)

-rulelD

-name

-description
-date

. . - L L]
-lowPriority

-symptoms o

LowPriority (true/false) allows you to prioritize rules. If multiple rules match a test failure, the rules
with true LowPriority will be ignored. Rules with false LowPriority should be the most specific and
exact match. Rules with true LowPriority may be symptoms rather than root test failure causes.

* A symptom contains a logfile and any associated search string(s) with that log file. Rules can have
multiple symptoms.

29

L3
=
+
¥

©@a

Rule Manager Website (3)

* View rules in the database and edit, delete, get info on, and test them, along with
creating new rules all from the View and Manage Rules Page (notice you can
create and test rules from either this page or the taskbar).)

QuickTriage Rules

crer When viewing rule info @,

. click “viEw ON I’ to
be taken to a summary page
with how many instances of
this rule have been found
(Test Source 1 only).

Rule Manager Website (4)

* Rules need to be as accurate and user-friendly as possible for the tool to work
well.
* Rules should be unique.
* Rules should be specific (general rules should be lowPriority)
* Rules should be tested to assure they work as expected.

Create

Using the ‘ADD SYMPTOM +
button, you can add multiple
symptoms to one rule. You can
also add multiple search strings
to one symptom.

Sy proms

30

Rule Manager Website (5)

* Rules should be tested upon creation to make sure they function as expected.
* Rules should also be tested if they are suspected not to be working correctly.

Test a Rule Test a Rule

Rule Manager Website (5)

* ‘Manual Search’ is used when you want to see what rule will match with a .zip.

Test a Rule
= QuickTriage

Home

* The ‘|l Search’ tab is only used in the Test Source 1 Process in section 3

31

2. Test Source 1 Process (1)

* There is an automated pipeline for the Test Source 1. When Test Source 1 tests
fail, the fail logs are sent through the QTT and displayed on the results website.

* To find what rules need to be created and added, you must go to the results
website and see what failed tests aren’t matching with a rule.

Test Source 1 Process (2)

* From the results website home page, navigate to Tests — I
I < > click on a ‘Failed’ number (ex. 14)

Results website link here:

18 94

32

Test Source 1 Process (2)

* From the results website home page, navigate to Tests = I
I < — < > click on a ‘Failed’ number (ex. 14)

Results website link here:

T Platform Stability
_j

-

Asset Passed Failed % Passed

Test Source Process (3)

* The far-right column contains the matching rule for the last test run. Clicking on it will bring
you to the Rule Manager Website and show you the rule’s info.

* For tests with no matched rule, download the fail logs using the Latest Logs = ‘Logs’ link to
manually analyze for a new failure.

* Once found, create a new rule on the Rule Manager Website to represent that new failure.

aanm——
— - \‘ | 1
It is importantto note
‘ ‘ thatthe new rule you
.P s ag— - [‘ create won’t show here
— as matched until the test
| runs and fails again.
-

33

Test Source 1 Process (4)

* If you’'d like, you can view an aggregation of the rules and how many times they have
been found in test failures on the results website. This allows issue prioritization!

* Navigate to Tests = Test Failures Mapping

Test Failures Mapping Summary

‘‘‘‘‘

Test Source 1 Process (5)

Last Changes!/Next...

* As a note, we have added retroactive rule searching, meaning that every 12 hours
or so, the QTT will search the rules database against all the recent test fail tips.

* This means that you should see the results of adding a new rule within 12 hours
instead of waiting for the test to run and fail again.

34

3. Test Source 2 Process (1)

* You'll need the location of a triage bundle, which you can get from the Test Source 2 website
* Website link here

* Filter on product, branch, and test pillar *This is only one way to

get the triage bundle
location. Any other
methods are okayas well.

* Click on the linked “Last Run” you wish to triage

|| lestkun | Dustion | Passed | Total | sePassed |]
Jul 22 13:05 2553930 01:45 10 10 100%.
Jul 22 12:22 2553930 07:02 a8 48 92.88%
2ul 22 18:47 2553930 03:46 a3 45 93.45%

01:45 10 10 100%
07:02 45 19 9496

03:46 a3 as 939

Test Source 2 Process (2)
* Go to Test History —Job

* Right click, “Copy link address” on a failure on the recent test run

35

Test Source 2 Process (3)

* On the Rule Manager website, navigate to the Tl Search’ page.
* Website link here:

* In the text box, paste the link address you copied previously, but remove the last
level of the path to reach the parent folder of the .zip.
Search-Tr‘lage Zip Folder

......

* Click “Search”. This runs each .zip in the folder against the database of rules.
Depending on the number of .zips, this could take some time. Look for the

loading icon in the top right. _

Test Source 2 Process (4)

* The resulting table shows the test name and the rule that matched.
* You can press the e icon to see the details of a matched rule.

smarcH @

36

Test Source 2 Process (5)

Find a test that did not match with a rule (“No Rule Found”). Go back to the test
source 2 website and search for the test (excluding the date and run information,
i.e. the red highlighted part) to download the fail logs of that test. Manually find
this new failure so that you can add a new rule in the database to catchiit.

Test Source 2 Process (6)

» Create a new rule for your failure. You can test the rule with the test failure .zip
you found it from to make sure it successfully matches.

QuickTriage

Homa
Vi st Mg ik
e s
et P
Mt S

Saach

s

* Now that the new rule is in the database, try running the Test Source 2 search

again. Not only should that failed test now match with your new rule, but other
failed tests may also match with your new rule.

37

Test Source 2 Process (7)

* Continue this process until all test failures in the folder used as input match with
arule.

* Once you're done, you can download a csv to your machine that contains the
data you see in the table.

Test Source 2 Process (8)

Last Changes! Next...

* We added:
* Sort by ‘Matched Rule’ on the results table
* Links on each .zip in the results table to make it easier to find the fail logs

38

Questions?

contact [

39

		pbartlow@nnu.edu, Barry Myers <blmyers@nnu.edu>, Mark Michaelson <markmichaelson@nnu.edu>, Dale Hamilton <dhamilton@nnu.edu>
	2024-04-26T21:08:49+0000
	pbartlow@nnu.edu: 43°33′32″N 116°34′1″W (12.943 m), Barry Myers: 43°41′46″N 116°19′23″W (35975.5 m), Mark Michaelson: 43°33′47″N 116°33′50″W (15.155 m), Dale Hamilton: 43°33′47″N 116°33′58″W (13.225 m)
	Certify the signatures of pbartlow@nnu.edu, Barry Myers <blmyers@nnu.edu>, Mark Michaelson <markmichaelson@nnu.edu>, Dale Hamilton <dhamilton@nnu.edu>

