

NORTHWEST NAZARENE UNIVERSITY

Four-Band Image Acquisition System

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Peter R. Oxley
2017

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Peter R. Oxley
2017

Four-Band Image Acquisition System

Author: __
Peter Oxley

Approved: __

Dale Hamilton, M.S., Assistant Professor of Computer Science
Department of Mathematics and Computer Science, Faculty Advisor

Approved: __

Julie Straight, Ph.D., Associate Professor of English
Department of Language, Literature, and Cultural Studies, Second Reader

Approved: __

Barry Myers, Ph.D., Chair
Department of Mathematics and Computer Science

iii

Abstract

Four-Band Image Acquisition System.
 OXLEY, PETER (Department of Math and Computer Science), HAMILTON, DALE
 (Department of Math and Computer Science).

An imaging system for acquiring electromagnetic reflectance data was specified,
designed, assembled, and tested. The acquisition device captures reflectance in the 400-
1000 nanometer wavelength spectrum, which is divided into three visible-light bands
(red, green, and blue) and the near-infrared band. The acquired data can be manipulated
in several ways to generate information about plant health, moisture content, and genus.
The system is built on a Raspberry Pi 3B and uses dual imaging sensors as well as a
number of position, motion, and orientation sensors, which allow the device to precisely
locate the captured images. The system is designed to be mounted on an unmanned aerial
vehicle in order to acquire a series of over-head images, which can later be stitched
together in an orthomosaic. Onboard device-control software was also developed and
tested, allowing each capture sequence to be customized with user options, which can be
set locally or remotely via an integrated user interface. This system is designed such that
it can be reproduced using components and production processes that are readily
available to most universities, and at a fraction of the cost of comparable commercially-
available systems.

iv

Acknowledgments

This research was supported in part by funding from NNU FireMAP. The author wishes
to thank the members of this Thesis Committee, the Computer Science Faculty Advisors,
the members of the FireMAP Research Team, Esteban Cano for patiently teaching the
author to solder, and all those who shared their knowledge and experience in the form of
documentation and online forum postings.

v

Table of Contents

Abstract .. iii
Acknowledgments.. iv
Table of Figures ... vi
Four-Band Image Acquisition System .. 1
Application of Near-Infrared Data .. 2
System Specification ... 3

System Design and Setup.. 5
Development Board .. 5
Imaging Sensors .. 5
Location and Orientation Sensors ... 6

Software Development.. 10

User Interface .. 10
Configuration File ... 11

Device Software .. 11
Results ... 14

Future Development.. 15
Conclusion .. 16

References ... 18
Appendices .. 19

Appendix A: Website References ... 19

Appendix B: Parts List and Sources ... 20
Appendix C: User Interface .. 21

Appendix D: Configuration File ... 23

Appendix E: Device Control ... 25

vi

Table of Figures

Figure 1. Visual Spectrum and Near-Infrared Band (Resonant FM, 2016) 2
Figure 2. Triangulation Problem .. 7
Figure 3. FourEyes User Interface ... 10
Figure 4. Earliest Opportunity Model Flowchart ... 13
Figure 5. RGB and NIR+GB compared ... 14

Figure 6. Sample Log Data .. 15

1

Four-Band Image Acquisition System

 Until just a few years ago, unmanned flight was almost exclusively limited to

expensive “remote controlled” aircraft that had to be continuously controlled by a

ground-based pilot. However, recent advances in small-scale unmanned flight mean that

many unmanned aircraft are relatively inexpensive, are capable of semi-autonomous

travel along a pre-programmed flight path, and are able to carry a small payload. These

developments have created a variety of opportunities for hobbyists, businesses,

researchers, and others to gather information from an aerial perspective. At the same

time, advancements in computer and sensor technology have made it possible to develop

small, light-weight, inexpensive devices intended for a specific application. While most

manufacturers of unmanned aircraft offer a camera that can take still images or video,

many owners are taking advantage of the airborne platform to carry other devices and

sensors, many of which are custom designed for the user’s needs.

 One such specific application involves using multi-spectral imaging to evaluate

plant health and moisture content. It has been shown that the amount of near-infrared

light that a plant reflects is indicative of the plant health and moisture content (Rouse,

1974). Many consumer-grade digital cameras can be modified to capture images that

include near-infrared data, and these modified cameras have become valuable agricultural

tools used for monitoring crop health. NNU’s Fire Monitoring and Assessment Platform

(FireMAP) research team became convinced that this same technology could be applied

to assessing moisture content and health of wildland plants, and that the information

generated could inform wildland fire management.

2

Application of Near-Infrared Data

 Electromagnetic radiation exists in a wide range of wavelengths. The narrow

range that humans are able to perceive visually is between approximately 400 and 700

nanometers and is often subdivided into three bands: red, green, and blue (RGB).

Radiation of longer wavelengths, between 700 and one million nanometers, is classified

as infrared (IR). The narrow subsection of the IR spectrum from approximately 700 to

1000 nanometers is usually described as near-infrared (NIR). Figure 1. Visual Spectrum

and Near-Infrared Band illustrates the various bands of electromagnetic radiation

(Resonant FM, 2016).

 Healthy plant leaves contain high amounts of chlorophyll, which absorbs a

significant amount of red and blue light for the photosynthesis process. As health

declines, the amount of chlorophyll that is present decreases as well, and more visual

spectrum light is reflected. Conversely, the cell structure of viable leaves reflects a high

percentage of NIR light, but drier leaves absorb more light from the NIR band (Weier &

Herring, 2000). Simply measuring the amount of NIR reflectance can give a limited

Figure 1. Visual Spectrum and Near-Infrared Band (Resonant FM, 2016)

3

amount of information about plant health, but much better information is found by

comparing NIR and red reflectance. A standard formula called the Normalized Difference

Vegetation Index (NDVI) is used to express the ratio of reflectance in these two ranges

(Holden, 2010). NDVI is calculated using NDVI = (NIR – red)/(NIR + red). The NDVI

calculation produces a number between negative one (-1) and positive one (+1). A result

near zero indicates that no viable plant material is present, while a result near +1 indicates

healthy plant material (Weier & Herring, 2000). Each pixel in an image can be evaluated

for NDVI, or blocks of pixels may be averaged together.

System Specification

As mentioned previously, many consumer-grade digital cameras can be modified

to capture NIR data. Inexpensive kits are available to make the conversion (Public Lab,

2016). Initially, NNU FireMAP intended to simply use modified cameras mounted on

small unmanned aerial vehicles (UAV) to capture NIR imagery. A camera was modified,

but early testing identified several drawbacks to this approach. Among the most

significant are the following:

1. Consumer-grade cameras are designed to capture three-band images. Modifying

them to capture NIR means sacrificing one of the other bands (usually red). This

can significantly reduce the accuracy the NDVI calculation since it depends on

comparing the red and NIR values. Later research revealed that analysis of the

RGB bands allowes for accurate categorization of vegetation types, making the

loss of data from one band even more undesirable.

2. Consumer-grade cameras of the type and quality that are appropriate for

modification tend to be heavy, approaching the maximum payload capacity of the

4

UAVs in use by FireMAP.

3. Because the FireMAP system is intended to survey large areas of wildland, the

captured imagery must include reasonably accurate location information. Some

consumer-grade cameras offer internal Global Positioning System (GPS) sensors,

but these cameras are heavier and significantly more expensive than their

counterparts without GPS functionality.

4. No consumer-grade camera was found that could be programmed to capture an

appropriately-timed sequence of photos.

The FireMAP team also determined that using a professional-grade multi-band sensor

was not an option because of the weight and cost of available models.

 After exploring other options, the FireMAP team decided to specify a custom

device to capture the desired data. The project was nicknamed “FourEyes,” and the initial

specifications included the following device requirements:

1. Inexpensive (relative to existing devices): The device must represent a cost

savings relative to readily-available sensors. Four-band devices that can capture

reflectance data in the desired spectra are available for approximately

$5000. Reproductions of this project should be no more than 10% of that cost.

2. Airframe agnostic: The device must be designed to be usable on virtually any

airframe configuration.

3. Light weight: The device must not hinder the flight or maneuverability of the

UAV to which it is attached. The airframes that are expected to carry this device

are in the 350mm, 1.5kg range.

4. Replicable by FireMAP or its partners: Multiple devices may be desired for

5

simultaneous data acquisition and to replace any that are damaged or lost. The

device must be designed in such a way as to be manufactured and calibrated with

minimal difficulty.

System Design and Setup

Development Board

The development board was the first component selected. All the other

components had to be compatible with the development board, and it had to be sufficient

to fulfill the FourEyes design requirements. The Raspberry Pi 3B was selected for several

reasons, but a large determining factor was the presence of a camera port and the

availability of inexpensive, compatible imaging sensors. Other factors included the low

price-point, the wide variety of compatible sensors, built-in Wi-Fi, the flexibility of the

operating system, and the active and enthusiastic user community. The only significant

disadvantage to the Raspberry Pi 3B was the weight. Other models of Raspberry Pi were

found to be lighter, but each sacrificed some valuable feature.

Imaging Sensors

 The Raspberry Pi Foundation offered cameras specifically designed for

compatibility with the Raspberry Pi devices. At nearly the same time as this project was

started, the Foundation began to offer an NIR camera. While the choice of imaging

sensors was obvious, the Raspberry Pi boards only included a single port for attaching a

camera, and no reasonable option for connecting a second camera. The option to use a

USB camera for the second imaging device was rejected because of the weight and the

external connection that would be required. The Raspberry Pi Compute Module IO Board

was considered, as it has two camera ports, but this option was eventually rejected

6

because the IO Board is significantly larger, heavier, and more expensive than the

Raspberry Pi 3B. Further research uncovered a small company in Turkey called IVMech

that was manufacturing a device designed specifically for attaching multiple cameras to a

Raspberry Pi. The IVMech IVPort device was a “multiplexer,” which powered two or

more cameras simultaneously, while rapidly switching between the data signals from

each camera. The first IVPort device was ordered from IVMech in early July, 2016, just

before the failed coup d’état in Turkey. As a result, the supplier was unable to make the

shipment for several days, but remained in regular contact, and when the device finally

arrived, the supplier provided excellent support via email. However, after a few

exchanges, email responses from IVMech suddenly ceased and the English version of the

IVMech website became unavailable. The website remains unavailable as of this date

(March, 2017). (It is the author’s sincere hope that the employees of IVMech and their

family members are safe). Later in 2016, a similar multiplexer device, which is

manufactured in China, became available on Amazon.

Location and Orientation Sensors

The FireMAP system requires images to be located and overlaid on a map in a

format called an orthomosaic. This requires relatively accurate information about the

location where a photo was taken. Sufficient accuracy is provided by most Global

Positioning System (GPS) devices. However, further complication is introduced when

capturing imagery from a UAV, because the imaging sensors may not be pointed straight

down. As Figure 2 illustrates, this means that the location of the device and the location

of the image center could be somewhat different. This introduces the need for some way

to measure the tilt and orientation of the imaging sensors. GPS devices offer some

7

orientation information, and a

device called an “accelerometer”

can provide tilt information.

GPS and accelerometer

devices each have limitations. GPS

orientation is determined by

direction of motion, rather than

relation to Magnetic North. This

means that if the device is facing a

different direction than it is

travelling, it will erroneously report

that it is facing in the direction of

travel. An accelerometer measures

the acceleration forces to which it is exposed. If it is traveling at a constant speed and

direction, then the data it produces can be used to calculate the angle of tilt, although

these calculations are quite complicated. Unfortunately, UAV flight rarely involves

constant speed and direction, and any course corrections, jostling from wind currents, or

elevation adjustments will reduce the accuracy of the tilt measurements. The result is that

conditions that improve the accuracy of one device will reduce the accuracy of the other.

Despite these limitations, pairing the GPS and accelerometer sensors seemed to be the

best way to gather data, and it was hoped that the image location could be calculated to

an acceptable level of precision.

The NNU Computer Science Department had recently purchased GPS and

Figure 2. Triangulation Problem

8

accelerometer devices manufactured by Microstack, so these were appropriated for this

project. Unfortunately, these were found to be difficult to configure for the Raspberry Pi

development board. The Microstack devices were designed to be compatible with

previous versions of Raspberry Pi, and updated configuration information was not readily

available. Adafruit Industries offered similar devices that were specified as being

compatible with the Raspberry Pi 3B. These were ordered and successfully connected

following the documentation provided by Adafruit.

The difficulty in calculating tilt in three dimensions (3D) was much more

significant than anticipated, but the NNU Mathematics Department generously offered

help and support. Before this solution had been pursued for very long, Professor Dale

Hamilton was told of a device called an “absolute orientation board” (AOB). This device

has an array of sensors and performs several calculations on-board, allowing it to capture

orientation to Magnetic North and the 3D angle of tilt, among other interesting data.

Replacing the accelerometer with the AOB would remove the need to calculate 3D

orientation in software and would overcome the shortcomings of the GPS orientation. An

AOB was purchased from Adafruit.

The AOB introduced a new challenge in the development of the project as it

needed to be connected to the same general purpose input/output (GPIO) pins as the GPS

device. Adafruit offered a USB adapter that works with the GPS board, but this was

unacceptable because using the adapter would require including an external cable. No

other alternative was found, so a switching device was proposed. This device would

utilize a small microcontroller to rapidly switch between the GPS and AOB devices,

similar to the function of the camera multiplexer. Unfortunately, the project developer

9

had no prior experience with embedded systems, so preparing a microcontroller to serve

this function required a large, unexpected investment of time. A kit supplied by Adafruit

was assembled to facilitate programming a microcontroller, and an adapter was designed

and assembled for use with the selected microcontroller. When development of the

microcontroller solution was nearly complete, a suitable adapter board was found that,

with some modification, could be installed without external cables. In the interest of time,

and to minimize the difficulty of replicating the project, the microcontroller solution was

abandoned and the adapter was specified.

Because the Raspberry Pi is actually a small computer, it must be shut down

before disconnecting the power supply, which means that simply switching a battery can

require approximately 60 seconds for the system to shut down and restart. When this

happens, power to the GPS sensor is also lost and upon restart, the GPS device will often

take 90 seconds or more to reacquire a sufficient signal. Two-and-a-half minutes is an

unacceptably long time requirement for simply switching batteries, so a second power

port was added to allow hot-swapping of power supplies.

Connections between hardware components were accomplished by means of

soldering or using jumper-wire connections. While these connectors add a small amount

of weight and take up additional space, they allow for easy replacement or rearrangement

of components, and they facilitate temporary disconnection for troubleshooting purposes.

At this point, all the specified components had been installed and were working

together. Through some experimentation, a suitable case design was established, and a

model created using RhinoCAD drafting software. The case was then fabricated using

one of NNU’s 3D printers.

10

Software Development

 The programming language selected for developing the device control software

was Python 3. The user interface (UI) is simply a local webpage written in the ubiquitous

Hypertext Markup Language (HTML), and the configuration file is an Extensible Markup

Language (XML) document. Taken together, these three files are a very simple

application of the Model-View-Controller (MVC) software architecture. The current

version of the FourEyes code (March, 2017) can be found in the appendices.

User Interface

 The UI is the user’s access point to the control software: the “view” in the MVC

design scheme. It is intended to offer the user a simple way to adjust the device options

and trigger the data capture sequence. Using a local webpage for the UI offers several

advantages. Most importantly,

a webpage will be supported

by almost any device,

allowing users to control the

system with whatever device

they choose. Another

consideration is the ease of

developing a webpage as

compared to writing an

application to perform the

same function. Additionally,

web-style interfaces will be

Figure 3. FourEyes User Interface

11

familiar to most users, allowing them to understand how to interact with the UI without a

lot of prompts or training (see Figure 3. FourEyes User Interface).

 When the UI loads, it accesses the last-used settings, which are stored in the

configuration file. Any changes the user makes are written to the configuration file and

used as instructions for the device software.

Configuration File

 The configuration file stores the adjustable parameters of the system. It is the

“controller” in the MVC architecture. Most of the settings stored here are the user

preferences, which are adjusted using the UI. However, any data that needs to be stored

by the device software between flights would be written here as well. When the user

triggers the data capture sequence, the device software looks up the control parameters in

the configuration file.

 Using the XML format for the configuration file offers a couple of advantages.

Many modern programming languages offer libraries or programming interfaces to

access and to write to XML documents, making the configuration file easily accessible to

both the UI and the device software. Also, a major feature of XML is that it is

“extensible.” In simple terms, this means that changes and improvements can be made to

an XML document without necessarily requiring any change to the programs that access

the file. This is useful because it allows features to be added and tested without

modifying the whole system.

Device Software

 The device software does the work of triggering the various sensors and

aggregating the data they return. Perhaps a little confusingly, the software that controls

12

the device is the “model” portion of the MVC framework. When the user triggers the data

capture sequence, the device software looks up the appropriate settings in the

configuration file and uses them to schedule the sequence.

 This software was written in Python primarily because Python is a convenient

language for development. It is broadly accepted and supported by a large user base, and

most of its syntax and conventions are easy to use and read. Python is also a language

that is widely used by the Raspberry Pi user base. Conveniently, Python happens to be

the language in which the Adafruit device interfaces are written, which greatly simplifies

the interaction with the device software.

 The main drawback to using Python is that Python code executes more slowly

than many others because it is evaluated as it runs, rather than being a compiled

language. For device control, the slightly slower execution can create issues when trying

to access multiple sub-systems as nearly simultaneously as possible. This issue is most

noticeable when trying to switch quickly between the two imaging sensors.

The device software must complete two different repetitive tasks: data logging

and image acquisition. These happen on different schedules, and the frequency of image

acquisition must be allowed to vary even within a single acquisition flight without

significantly impacting the frequency of data logging. For instance, under certain

conditions, an image capture could be delayed for several seconds, but logging should

continue. In this system, the user may choose to capture images based on distance or

speed, rather than time, so it is not appropriate to use a strict timer-model to trigger data

logging and image acquisition. Instead, FourEyes uses an “earliest opportunity” model

for data capture. The earliest opportunity model, illustrated in Figure 4. Earliest

13

Opportunity Model Flowchart, defines milestones that, when passed, give permission to a

data capture event. On completion of that event, a new milestone is defined. If a

milestone has not been reached for a certain event, or if the capture event must be

postponed, the software proceeds to evaluate milestones for other events and retries the

initial event again at the next opportunity. In this way, the data is not captured on a strict

schedule, but at the earliest appropriate opportunity. This provides significant flexibility

to the data capture process.

 The primary reason that image capture might be delayed is high angular velocity

(rotational speed) of the device.

The system attempts to take two

images as nearly simultaneously

as possible, but a slight delay in

both the software and the

hardware create a brief interval

between the capture of each

image. If the UAV is turning

during an image capture

sequence, the two images will

not align well. Fortunately, this

project adopted the AOB, which

calculates angular velocity. If an

image capture milestone is reached, but high angular velocity is detected, the image

capture is postponed.

Figure 4. Earliest Opportunity Model Flowchart

14

 For each data log milestone, flight data is captured. Some of this data provides a

record of the flight path and flight conditions; other data is used to determine if a

milestone has been reached. When an image capture milestone is reached, and when

flight and device conditions allow, the RGB and NIR sensors are triggered and the

images are captured and saved to file. At that point an additional record is entered in the

log to indicate the location and conditions when the photos were taken.

Results

 After an acquisition flight is complete, the images and flight data are uploaded to

the FireMAP system, and the location and orientation data are used to overlay the images

accurately on a map in an orthomosaic. Of the two images captured by FourEyes, one is

RGB and the other is NIR+GB. A pair of images is shown in Figure 5. RGB and

NIR+GB compared. The NIR from one image can be compared to the red from the other

image for true NDVI calculation. Since both images have the green and blue bands, this

data can be compared to ensure accurate alignment of the two images. Once aligned,

FireMAP has the option to treat each of the four reflectance bands as a separate map

layer, or to convert the image into a single four-band image. Images from multiple

acquisition flights can be “stitched” together to represent large areas of contiguous data.

Figure 5. RGB and NIR+GB compared

15

 In addition to helping locate the images, the data collected in the logfile can

provide FireMAP information about the conditions in which the images were captured.

The data in the logfile can also help FireMAP analyze and flight anomalies and provide

an accurate record of the flightpath. A sample data log is shown in Figure 6.

Future Development

There are several areas in which the FourEyes system could be improved, refined,

or extended. On the hardware side, the device could be made lighter. One option for

doing this is to modify the Raspberry Pi 3B board itself to remove unnecessary physical

components. Another option to explore is the new Raspberry Pi Zero W, which, unlike

the previous version, has Wi-Fi on-board. Improving the sensor-wire connector system

could slightly reduce weight, but more importantly, it would make the cabling more

organized and easier to connect and disconnect when needed.

 On the software side, there are several possible improvements as well. Rewriting

the device software in the C programming language should help it to execute more

quickly, possibly reducing the delay between capture of image pairs. Another

improvement that could reduce the delay would be to buffer the first image in RAM

while taking the second photo. Currently, the system must finish saving the first image to

disk before the second image is captured, a process that introduces a delay of

approximately 0.2 seconds.

Figure 6. Sample Log Data

16

 In the current system design, the coordinate information for the images is only

stored in the data log. While it is a relatively simple operation to parse that data when

creating an orthomosaic, it might be worthwhile to have those data imbedded in the

metadata header of the photos so that the image files would still be useful if they were

ever separated from the data log.

At present, the UI design has not been optimized for hand-held devices. While the

UI webpage should be compatible with tablets and smartphones, the user may have to

resize the webpage to interact with it. Adding Cascading Style Sheet (CSS) functionality

to the View could enable the UI to adjust dynamically to any screen size.

The current system configuration requires FourEyes and the user’s device to be

connected to the same network via a router. This requires a portable router of some sort

to be brought to the acquisition site. However, a Raspberry Pi is capable of being

configured to serve as a router. Adding this feature to FourEyes would mean one less

device was required on-site. After moving out of range, the FourEyes device occasionally

has difficulty reconnecting to the router when it returns. This problem would be

eliminated if the FourEyes device were acting as the system router.

Conclusion

 The FourEyes project was very challenging, and a significant amount of time was

spent developing subsystems that were later abandoned. While individual components

were well documented, combining them in this way created several new difficulties.

However, the final product was a system that met all the initial project specifications and

provided a detailed record of a data acquisition flight and pairs of images that can be

analyzed for information that is valuable to the FireMAP project. The project should be

17

replicable by anyone with reasonable soldering skills and access to a 3D printer, and for a

total cost of under $300, which was significantly less than commercially-available

options. Further development of this project could produce an image acquisition system

that is even more useful and user-friendly.

18

References

Holden, Z. A. (2010). Beyond Landsat: A Comparison of Four Satellite Sensors for

Detecting Burn Severity in Ponderosa Pine Forests of the Gila Wilderness, NM,

USA. International Journal of Wildland Fire, 449-458.

Public Lab. (2016). Infragram DIY Filter Pack. Retrieved from Public Lab:

https://publiclab.myshopify.com/collections/diy-infrared-

photography/products/infragram-diy-filter-pack

Resonant FM. (2016, March 28). Red and Near-Infrared Light. Retrieved from Resonant

FM: http://www.resonantfm.com/red-and-near-infrared-light-buyers-guide-part-i-

incandescent-halogen-and-heat-bulbs

Rouse, J. H. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS.

Proceedings, 3rd Earth Resource Technology Satellited (ERTS) Symposium, 1,

46-62.

Weier, J., & Herring, D. (2000, August 30). Measuring Vegitation: NDVI & EVI.

Retrieved from Earth Observatory:

https://earthobservatory.nasa.gov/Features/MeasuringVegetation

19

Appendices

Appendix A: Website References

Adafruit: www.adafruit.com

Amazon: www.amazon.com

IVMech: www.ivmech.com

Microstack: www.microstack.org.uk

Python: www.python.org

Raspberry Pi Foundation: www.raspberrypi.org

RhinoCAD: www.rhino3d.com

20

Appendix B: Parts List and Sources

Absolute Orientation Board: Adafruit. www.adafruit.com/product/2472

Device Case: Printable using file at http://github.com/poxley/4eyes

Multiplexer: Amazon: http://a.co/fXk9AWR

Raspberry Pi 3B: Adafruit. www.adafruit.com/product/3055

Raspberry Pi Camera Rev 1.3: Amazon. http://a.co/7bwhFnv

Raspberry Pi NoIR Camera Rev 1.3: Amazon. http://a.co/aA09s46

(NOTE: v2.1 cameras not compatible with multiplexors)

Ultimate GPS Board: Adafruit: www.adafruit.com/product/746

USB Micro-B Board: Adafruit: www.adafruit.com/product/1833

USB to Serial Adapter: Amazon: http://a.co/a1FWGcN

Also required are generic jumpers, headers, and miscellaneous components

Hardware Options to Explore

Arducam Milti Camera Adapter Board: Amazon. http://a.co/3sqh2dj

Raspberry Pi 3B component reduction: lifehacker. https://goo.gl/sUkGwM

Raspberry Pi Zero W: Adafruit. www.adafruit.com/product/3400

I2C to UART Bridge: Sandbox Electronics. https://goo.gl/ss9vZG

21

Appendix C: User Interface

More recent version may be available at http://github.com/poxley/4eyes

<!DOCTYPE html>

<!-- 4eyes User Interface -->

<html>

<h1>FourEyes User Preferences</h1>

 <form name="UI" method="POST" action="">

 <fieldset>

 <legend>Start delay:</legend>

 <input type="radio" name="delay" value="altitude" checked>

altitude: Delay sequence until n meters above START

 <input type="radio" name="delay" value="distance">

distance: Delay sequence until n meters away from START

 <input type="radio" name="delay" value="time"> time: Delay

sequence until n seconds after START

 n = <input type="number" name="delayValue">

 </fieldset>

 <fieldset>

 <legend>Capture trigger:</legend>

 <input type="radio" name="trigger" value="distance"

checked> distance: Capture image every n meters

 <input type="radio" name="trigger" value="speed"> speed:

Capture image when UAV drops belonw n meters per second

 <input type="radio" name="trigger" value="time"> time:

Capture image every n seconds

 n = <input type="number" name="triggerValue">

 </fieldset>

 <fieldset>

 <legend>Termination condition:</legend>

 <input type="radio" name="termination" value="altitude"

checked> altitude: Terminate sequence when UAV returns to within n

meters above START

 <input type="radio" name="termination" value="frames">

frames: Terminate sequence after capturing n frames

 <input type="radio" name="termination" value="time"> time:

Termiate sequence after n seconds

 n = <input type="number" name="terminateValue">

 </fieldset>

 <fieldset>

 <legend>Maximum rotational velocity:</legend>

 degrees: Delay frame if UAV is rotating faster than n

degrees per second

 n = <input type="number" name="rotationValue">

 </fieldset>

 <fieldset>

 <legend>Log frequency:</legend>

 time: Record and log data every n seconds

 n = <input type="number" name="logFrequencyValue">

 </fieldset>

22

 <fieldset>

 <legend>Directory:</legend>

 location: Save log and images

 <input type="text" name="filepathValeu">

 </fieldset>

 <input type="submit" id="submitbtn" value="START">

 </form>

</html>

23

Appendix D: Configuration File

More recent version may be available at http://github.com/poxley/4eyes

<?xml version="1.0" encoding="UTF-8"?>

<!-- 4eyes Configuration File -->

<settings>

 <!-- Wait to begin photo sequence -->

 <setting category="delay">

 <type>time</type> <!-- altitude: meters, distance: meters,

time: seconds -->

 <value>30</value>

 <options>

 <option>altitude</option>

 <option>distance</option>

 <option>time</option>

 </options>

 </setting>

 <!-- When to take a photo -->

 <setting category="trigger">

 <type>time</type> <!-- distance: meters, speed:

meters/second, time: seconds -->

 <value>10</value>

 <options>

 <option>distance</option>

 <option>speed</option>

 <option>time</option>

 </options>

 </setting>

 <!-- How long to keep taking photos -->

 <setting category="termination">

 <type>frames</type> <!-- altitude: meters, frames:

quantity, time: seconds -->

 <value>30</value>

 <options>

 <option>altitude</option>

 <option>frames</option>

 <option>time</option>

 </options>

 </setting>

 <!-- Maximum rotational velocity -->

 <setting category="rotation">

 <type>degrees</type> <!-- degrees/second -->

 <value>30</value>

 <options>

 <option>time</option>

 </options>

 </setting>

 <!-- Log frequency -->

 <setting category="log_frequency">

24

 <type>time</type> <!-- seconds -->

 <value>5</value>

 <options>

 <option>time</option>

 </options>

 </setting>

 <!-- Storage location -->

 <!-- Placeholder for future work: -->

 <!-- Field to select file storage location -->

</settings>

25

Appendix E: Device Control

More recent version may be available at http://github.com/poxley/4eyes

#!/usr/bin/python

4Eyes Control Software: 4eyes.py

Capture NIR+RGB images with Raspberry Pi

Copyright (c) 2017 Peter Oxley -- poxley@nnu.edu

Developed for NNU FireMAP and Professor Dale Hamilton M.S.

Imports

import sys

import time

import datetime

import picamera

import os

import gps

from geopy.distance import vincenty

from Adafruit_BNO055 import BNO055

import RPi.GPIO as gp

import xml.etree.ElementTree as et

Function: setCam()

Parameters: cam, the desired camera

Returns: current camera

Description: sets GPIO condition

By: Oxley

def setCam(cam):

 if cam == 2:

 gp.output(CAM_SELECT_PIN, True)

 return 2

 else:

 gp.output(CAM_SELECT_PIN, False)

 return 1

Function: swapCam()

Parameters: cam, the current camera

Returns: (new) current camera

Description: set the correct GPIO pins to switch cameras

By: Oxley

def swapCam(cam):

 if cam == 1:

 gp.output(CAM_SELECT_PIN, True)

 return 2

 else:

 gp.output(CAM_SELECT_PIN, False)

 return 1

26

Function: delay()

Parameters: none

Returns: continue to delay (T/F)

Description: determine if user delay requirement has been met

By: Oxley

def delayStart(stats):

 if DELAY_TYPE == 'distance':

 if (distanceFrom(START_LATITUDE, START_LONGITUDE, stats[2],

stats[3]) < DELAY_VALUE):

 return True

 else:

 return False

 elif DELAY_TYPE == 'altitude':

 if (stats[4] < START_ALTITUDE + DELAY_VALUE):

 return True

 else:

 return False

 elif DELAY_TYPE == 'time':

 if (currentTime() < START_TIME +

datetime.timedelta(seconds=(int(DELAY_VALUE)))):

 return True

 else:

 return False

Function: initializeGPS

Parameters: none

Returns: start conditions for program constants

Description: wait until all startup data is available from GPS,

use to set constants and clock

By: Oxley

def initializeGPS():

 initFlag = 0

 startAlt, startLat, startLon = 0.0, 0.0, 0.0

 while initFlag < 4:

 if VERBOSE_OUTPUT:

 print(str(currentTime()) + " Waiting for GPS to

initialize")

 initFlag = 0

 gpsReport = gpsSession.next()

 if gpsReport['class'] == 'TPV':

 if hasattr(gpsReport, 'alt'):

 startAlt = gpsReport.alt

 initFlag += 1

 if hasattr(gpsReport, 'lat'):

 startLat = gpsReport.lat

 initFlag += 1

 if hasattr(gpsReport, 'lon'):

 startLon = gpsReport.lon

 initFlag += 1

 if hasattr(gpsReport, 'time') and initFlag == 3:

 os.system("sudo timedatectl set-time " +

gpsReport.time)

27

 initFlag += 1

 if initFlag < 4:

 time.sleep(1)

 setupData = (startAlt, startLat, startLon)

 return (setupData)

Function: terminate()

Parameters: frame, the current frame sequence number

Returns: terminate now (T/F)

Description: determine if capture sequence is complete

By: Oxley

def terminate(stats, frame, sequenceStartTime):

 if TERMINATION_TYPE == 'altitude':

 if (stats[4] < START_ALTITUDE + TERMINATION_VALUE):

 return True

 else:

 return False

 elif TERMINATION_TYPE == 'frames':

 quantity = TERMINATION_VALUE

 if quantity > frame:

 return True

 else:

 return False

 elif TERMINATION_TYPE == 'time':

 if (sequenceStartTime + TERMINATION_VALUE < currentTime()):

 return True

 else:

 return False

Function: updateTermFlag()

Parameters: stats, a list

Returns: eligible for termination (T/F)

Description: routine is not eligible for termination until

termination altitude is exceeded

By: Oxley

def updateTermFlag(stats):

 if TERMINATION_TYPE == 'altitude':

 if (stats[4] > START_ALTITUDE + TERMINATION_VALUE):

 return True

 else:

 return False

 else:

 return True

Function: captureOne()

Parameters: frame, the current frame sequence number; camera, the

selected camera

Returns: none

Description: capture single image from selected camera

28

By: Oxley

def captureOne(frame, cam):

 prefix = fileName()

 if cam == 1:

 spectrum = 'RGB'

 else:

 spectrum = 'NIR'

 yield (prefix + '%s%03d.jpg' %(spectrum, frame))

Function: captureImages()

Parameters: frame, the current frame sequence number

Returns: frame count

Description: trigger sub-function (captureOne())

By: Oxley

def captureImages(frame):

 # cam = setCam(1)

 for j in range(1, 3):

 time.sleep(0.01) # adjust depending on actual latency

 cam = setCam(j)

 time.sleep(0.01) # adjust depending on actual latency

 # for camera.capture_sequence function (below)

 # "yield" command *must* appear within the called function,

 # cannot be called in sub-function.

 camera.capture_sequence(captureOne(frame, cam),

use_video_port=True)

 return

Function: distanceFrom(lat, lon)

Parameters: lat and lon: a set of coordinates

Returns: euclidean distance

Description: takes lat an lon of some point and calculates distance

from current location

By: Oxley

def distanceFrom(startLat, startLon, endLat, endLon):

 here = (endLat, endLon)

 there = (startLat, startLon)

 return abs(vicenty(here, there).meters)

Function: fileName()

def fileName():

 return ('{:%y%m%d_%H%M}'.format(datetime.datetime.now()))

Function: getStats()

Parameters: none

Returns: list of stats from GPS and AOB

29

Description: poll GPS and AOB, parse results for desired data, return

data as a list

By: Oxley

def getStats():

 curTime, curLat, curLon, curAlt, curAgl, curClimb, curSpeed,

curSats, curEpx, curEpy, curEpv, curTrack, curHead, curRoll, curPitch,

currAngVel = "na", "na", "na", "na", "na", "na", "na", "na", "na",

"na", "na", "na", "na", "na", "na", "na"

 curImg = 'n'

 statsReport = gpsSession.next()

 if statsReport['class'] == 'TPV':

 if hasattr(statsReport, 'time'):

 curTime = statsReport.time

 if hasattr(statsReport, 'lat'):

 curLat = statsReport.lat

 if hasattr(statsReport, 'lon'):

 curLon = statsReport.lon

 if hasattr(statsReport, 'alt'):

 curAlt = statsReport.alt

 if hasattr(statsReport, 'climb'):

 curClimb = statsReport.climb

 if hasattr(statsReport, 'speed'):

 curSpeed = statsReport.speed

 if hasattr(statsReport, 'epx'):

 curEpx = statsReport.epx

 if hasattr(statsReport, 'epy'):

 curEpy = statsReport.epy

 if hasattr(statsReport, 'epv'):

 curEpv = statsReport.epv

 if hasattr(statsReport, 'track'):

 curTrack = statsReport.track

 if statsReport['class'] == 'SKY':

 if hasattr(statsReport, 'satellites'):

 rprtSatellites = statsReport.satellites

 satCount = 0

 curSats = 0

 for sat in rprtSatellites:

 satCount += 1

 if sat.used:

 curSats += 1

 curHead, curRoll, curPitch = bno.read_euler()

 xVel, yVel, zVel = bno.read_gyroscope()

 curAngVel = max(xVel, yVel, zVel)

 if curAlt != 'na':

 curAgl = curAlt - START_ALTITUDE

 stats = [curTime, curImg, curLat, curLon, curAlt, curAgl, curClimb,

curSpeed, curSats, curEpx, curEpy, curEpv, curTrack, curHead, curRoll,

curPitch, curAngVel]

 return stats

Function: imageMilestoneReached()

Parameters: stats (a list), lastMilestone (previous successful

milestone)

Returns: true or false

30

Description: determine if current conditions indicate images should

be captured

By: Oxley

def imageMilestoneReached(stats, lastMilestone, recentSpeed):

 if TRIGGER_TYPE == 'distance':

 startLat, startLon = lastMilestone

 if (distanceFrom(startLat, startLon, stats[2], stats[3]) <

TRIGGER_VALUE):

 return False

 else:

 return True

 elif TRIGGER_TYPE == 'speed':

 if (stats[7] < recentSpeed and stats[7] < TRIGGER_VALUE):

 return True

 else:

 return False

 elif TRIGGER_TYPE == 'time':

 # reformat lastMilestone into datetime

 milestoneDT = datetime.datetime.strptime(lastMilestone, '%Y-%m-

%dT%H:%M:%S.%fz')

 elapsedTime = currentTime() - milestoneDT

 mins, secs = divmod(elapsedTime.seconds, 1000)

 if (secs < TRIGGER_VALUE):

 return False

 else:

 return True

Function: updateImageMilestone()

Parameters: stats (a list)

Returns: new milestone

Description: provides correct milestone based on image trigger from

.cfg file

By: Oxley

def updateImageMilestone(stats, oldMilestone):

 newMilestone = oldMilestone

 if TRIGGER_TYPE == 'distance':

 newMilestone = (stats[2], stats[3])

 elif TRIGGER_TYPE == 'speed':

 newMilestone = oldMilestone

 elif TRIGGER_TYPE == 'time':

 newMilestone = (stats[0])

 return newMilestone

Function: currentTime()

def currentTime():

 return datetime.datetime.now()

Function: writeLogHeader()

31

Parameters: none

Returns: none

Description: write column headers in logfile

By: Oxley

def writeLogHeader():

 columns = ("{0:>8}, {1:>3}, {2:>13}, {3:>13}, {4:>6}, {5:>6},

{6:>5}, {7:>5}, {8:>4}, {9:>4}, {10:>4}, {11:>4}, {12:>5}, {13:>5},

{14:>4}, {15:>5}, {16:>3}").format(

 "time", "img", "lat", "lon", "alt", "agl", "climb", "speed",

"sats", "epx", "epy", "epv", "track", "head",

 "roll", "pitch", ">v")

 LOG_FILE.write(columns)

 return

Function: writeLog()

Parameters: stats (a list)

Returns: none

Description: get list of PGS and AOB data and write to file

By: Oxley

def writeLog(stats):

 columns = (

 "{0:>8}, {1:>3}, {2:>13.8}, {3:>13.8}, {4:>6.2}, {5:>6.2},

{6:>4.2}, {7:>4.2}, {8:>3}, {9:>4.2}, {10:>4.2}, {11:>4.2}, {12:>5.2},

{13:>5.2}, {14:>4.1}, {15:>4.1}, {16:>3.1}").format(

 stats[0], stats[1], stats[2], stats[3], stats[4], stats[5],

stats[6], stats[7], stats[8], stats[9], stats[10], stats[11],

 stats[12], stats[13], stats[14], stats[15], stats[16])

 LOG_FILE.write(columns)

 return

Function: main()

Parameters: none

Returns:

Description: main function

By: Oxley

def main():

 writeLogHeader()

 # create a list to handle stats from GPS and AOB

 stats = getStats()

 # Wait for start condition to evaluate true

 while delayStart(stats) is True:

 time.sleep(0.2)

 # initialize cameras

 with picamera.PiCamera() as camera:

 camera.start_preview()

 # set control variables

 terminationEligible = False

 recentSpeed = 0.0

 frame = 1

32

 imageMilestone = 0

 logMilestone = START_TIME

 sequenceStartTime = currentTime()

 while (terminationEligible is False or terminate(stats, frame,

sequenceStartTime) is False):

 stats = getStats()

 if imageMilestoneReached(stats, imageMilestone,

recentSpeed) and stats[16] < MAX_ROTATIONAL_VELOCITY:

 captureImages(frame)

 stats[1] = frame

 writeLog(stats)

 imageMilestone = updateImageMilestone(stats,

imageMilestone)

 logMilestone = currentTime()

 frame += 1

 elif (currentTime() > logMilestone +

datetime.timedelta(seconds=LOG_INTERVAL)):

 writeLog(stats)

 logMilestone = currentTime()

 if terminationEligible is False:

 terminationEligible = updateTermFlag(stats)

 recentSpeed = stats[7]

 writeLog(stats)

 return

############### BEGIN ####################

GPIO setup

CAM_SELECT_PIN = 17

AOB_RESET_PIN = 18

gp.setwarnings(False)

gp.setmode(gp.BCM)

gp.setup(CAM_SELECT_PIN, gp.OUT)

gp.output(CAM_SELECT_PIN, False)

GPS setup

os.system("sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock")

gpsSession = gps.gps("localhost", "2947")

gpsSession.stream(gps.WATCH_ENABLE | gps.WATCH_NEWSTYLE)

AOB setup

bno = BNO055.BNO055(serial_port='/dev/ttyAMA0', rst=AOB_RESET_PIN)

if not bno.begin():

 raise RuntimeError('Failed to initialize AOB')

access config file

tree = et.parse('4eyes.cfg')

settings = tree.getroot()

CONSTANTS

VERBOSE_OUTPUT = True

get initial conditions

START_ALTITUDE, START_LATITUDE, START_LONGITUDE = initializeGPS()

START_TIME = currentTime()

DELAY_TYPE = settings[0][0].text # altitude, distance, time

DELAY_VALUE = settings[0][1].text

TRIGGER_TYPE = settings[1][0].text # distance, speed, time

TRIGGER_VALUE = settings[1][1].text

33

TERMINATION_TYPE = settings[2][0].text # altitude, frames, time

TERMINATION_VALUE = settings[2][1].text

MAX_ROTATIONAL_VELOCITY = settings[3][1].text # delay imaging if

rotating too fast

LOG_INTERVAL = settings[4][1].text # write log every n seconds

DATA_LOCATION = "" # will want to get this from cfg file user select

LOG_FILE = open(DATA_LOCATION + fileName() + "log.txt", "w")

main()

LOG_FILE.close()

gp.output(11, False)

exit()

