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Abstract 

Four-Band Image Acquisition System. 
    OXLEY, PETER (Department of Math and Computer Science), HAMILTON, DALE  
    (Department of Math and Computer Science). 
 
An imaging system for acquiring electromagnetic reflectance data was specified, 
designed, assembled, and tested. The acquisition device captures reflectance in the 400-
1000 nanometer wavelength spectrum, which is divided into three visible-light bands 
(red, green, and blue) and the near-infrared band. The acquired data can be manipulated 
in several ways to generate information about plant health, moisture content, and genus. 
The system is built on a Raspberry Pi 3B and uses dual imaging sensors as well as a 
number of position, motion, and orientation sensors, which allow the device to precisely 
locate the captured images. The system is designed to be mounted on an unmanned aerial 
vehicle in order to acquire a series of over-head images, which can later be stitched 
together in an orthomosaic. Onboard device-control software was also developed and 
tested, allowing each capture sequence to be customized with user options, which can be 
set locally or remotely via an integrated user interface. This system is designed such that 
it can be reproduced using components and production processes that are readily 
available to most universities, and at a fraction of the cost of comparable commercially-
available systems. 
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Four-Band Image Acquisition System 

 Until just a few years ago, unmanned flight was almost exclusively limited to 

expensive “remote controlled” aircraft that had to be continuously controlled by a 

ground-based pilot. However, recent advances in small-scale unmanned flight mean that 

many unmanned aircraft are relatively inexpensive, are capable of semi-autonomous 

travel along a pre-programmed flight path, and are able to carry a small payload. These 

developments have created a variety of opportunities for hobbyists, businesses, 

researchers, and others to gather information from an aerial perspective. At the same 

time, advancements in computer and sensor technology have made it possible to develop 

small, light-weight, inexpensive devices intended for a specific application. While most 

manufacturers of unmanned aircraft offer a camera that can take still images or video, 

many owners are taking advantage of the airborne platform to carry other devices and 

sensors, many of which are custom designed for the user’s needs. 

 One such specific application involves using multi-spectral imaging to evaluate 

plant health and moisture content. It has been shown that the amount of near-infrared 

light that a plant reflects is indicative of the plant health and moisture content (Rouse, 

1974). Many consumer-grade digital cameras can be modified to capture images that 

include near-infrared data, and these modified cameras have become valuable agricultural 

tools used for monitoring crop health. NNU’s Fire Monitoring and Assessment Platform 

(FireMAP) research team became convinced that this same technology could be applied 

to assessing moisture content and health of wildland plants, and that the information 

generated could inform wildland fire management. 
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Application of Near-Infrared Data 

 Electromagnetic radiation exists in a wide range of wavelengths. The narrow 

range that humans are able to perceive visually is between approximately 400 and 700 

nanometers and is often subdivided into three bands: red, green, and blue (RGB). 

Radiation of longer wavelengths, between 700 and one million nanometers, is classified 

as infrared (IR). The narrow subsection of the IR spectrum from approximately 700 to 

1000 nanometers is usually described as near-infrared (NIR). Figure 1.  Visual Spectrum 

and Near-Infrared Band illustrates the various bands of electromagnetic radiation 

(Resonant FM, 2016). 

 Healthy plant leaves contain high amounts of chlorophyll, which absorbs a 

significant amount of red and blue light for the photosynthesis process. As health 

declines, the amount of chlorophyll that is present decreases as well, and more visual 

spectrum light is reflected. Conversely, the cell structure of viable leaves reflects a high 

percentage of NIR light, but drier leaves absorb more light from the NIR band (Weier & 

Herring, 2000). Simply measuring the amount of NIR reflectance can give a limited 

 
Figure 1.  Visual Spectrum and Near-Infrared Band (Resonant FM, 2016) 
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amount of information about plant health, but much better information is found by 

comparing NIR and red reflectance. A standard formula called the Normalized Difference 

Vegetation Index (NDVI) is used to express the ratio of reflectance in these two ranges 

(Holden, 2010). NDVI is calculated using NDVI = (NIR – red)/(NIR + red). The NDVI 

calculation produces a number between negative one (-1) and positive one (+1). A result 

near zero indicates that no viable plant material is present, while a result near +1 indicates 

healthy plant material (Weier & Herring, 2000). Each pixel in an image can be evaluated 

for NDVI, or blocks of pixels may be averaged together. 

System Specification 

As mentioned previously, many consumer-grade digital cameras can be modified 

to capture NIR data. Inexpensive kits are available to make the conversion (Public Lab, 

2016). Initially, NNU FireMAP intended to simply use modified cameras mounted on 

small unmanned aerial vehicles (UAV) to capture NIR imagery. A camera was modified, 

but early testing identified several drawbacks to this approach. Among the most 

significant are the following: 

1. Consumer-grade cameras are designed to capture three-band images. Modifying 

them to capture NIR means sacrificing one of the other bands (usually red). This 

can significantly reduce the accuracy the NDVI calculation since it depends on 

comparing the red and NIR values. Later research revealed that analysis of the 

RGB bands allowes for accurate categorization of vegetation types, making the 

loss of data from one band even more undesirable. 

2. Consumer-grade cameras of the type and quality that are appropriate for 

modification tend to be heavy, approaching the maximum payload capacity of the 
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UAVs in use by FireMAP. 

3. Because the FireMAP system is intended to survey large areas of wildland, the 

captured imagery must include reasonably accurate location information. Some 

consumer-grade cameras offer internal Global Positioning System (GPS) sensors, 

but these cameras are heavier and significantly more expensive than their 

counterparts without GPS functionality. 

4. No consumer-grade camera was found that could be programmed to capture an 

appropriately-timed sequence of photos. 

The FireMAP team also determined that using a professional-grade multi-band sensor 

was not an option because of the weight and cost of available models. 

 After exploring other options, the FireMAP team decided to specify a custom 

device to capture the desired data. The project was nicknamed “FourEyes,” and the initial 

specifications included the following device requirements: 

1. Inexpensive (relative to existing devices): The device must represent a cost 

savings relative to readily-available sensors.  Four-band devices that can capture 

reflectance data in the desired spectra are available for approximately 

$5000.  Reproductions of this project should be no more than 10% of that cost. 

2. Airframe agnostic: The device must be designed to be usable on virtually any 

airframe configuration. 

3. Light weight: The device must not hinder the flight or maneuverability of the 

UAV to which it is attached.  The airframes that are expected to carry this device 

are in the 350mm, 1.5kg range. 

4. Replicable by FireMAP or its partners: Multiple devices may be desired for 
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simultaneous data acquisition and to replace any that are damaged or lost.  The 

device must be designed in such a way as to be manufactured and calibrated with 

minimal difficulty. 

System Design and Setup 

Development Board  

The development board was the first component selected. All the other 

components had to be compatible with the development board, and it had to be sufficient 

to fulfill the FourEyes design requirements. The Raspberry Pi 3B was selected for several 

reasons, but a large determining factor was the presence of a camera port and the 

availability of inexpensive, compatible imaging sensors. Other factors included the low 

price-point, the wide variety of compatible sensors, built-in Wi-Fi, the flexibility of the 

operating system, and the active and enthusiastic user community. The only significant 

disadvantage to the Raspberry Pi 3B was the weight.  Other models of Raspberry Pi were 

found to be lighter, but each sacrificed some valuable feature. 

Imaging Sensors 

 The Raspberry Pi Foundation offered cameras specifically designed for 

compatibility with the Raspberry Pi devices. At nearly the same time as this project was 

started, the Foundation began to offer an NIR camera. While the choice of imaging 

sensors was obvious, the Raspberry Pi boards only included a single port for attaching a 

camera, and no reasonable option for connecting a second camera. The option to use a 

USB camera for the second imaging device was rejected because of the weight and the 

external connection that would be required. The Raspberry Pi Compute Module IO Board 

was considered, as it has two camera ports, but this option was eventually rejected 
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because the IO Board is significantly larger, heavier, and more expensive than the 

Raspberry Pi 3B. Further research uncovered a small company in Turkey called IVMech 

that was manufacturing a device designed specifically for attaching multiple cameras to a 

Raspberry Pi. The IVMech IVPort device was a “multiplexer,” which powered two or 

more cameras simultaneously, while rapidly switching between the data signals from 

each camera. The first IVPort device was ordered from IVMech in early July, 2016, just 

before the failed coup d’état in Turkey. As a result, the supplier was unable to make the 

shipment for several days, but remained in regular contact, and when the device finally 

arrived, the supplier provided excellent support via email. However, after a few 

exchanges, email responses from IVMech suddenly ceased and the English version of the 

IVMech website became unavailable. The website remains unavailable as of this date 

(March, 2017). (It is the author’s sincere hope that the employees of IVMech and their 

family members are safe). Later in 2016, a similar multiplexer device, which is 

manufactured in China, became available on Amazon. 

Location and Orientation Sensors 

The FireMAP system requires images to be located and overlaid on a map in a 

format called an orthomosaic. This requires relatively accurate information about the 

location where a photo was taken. Sufficient accuracy is provided by most Global 

Positioning System (GPS) devices.  However, further complication is introduced when 

capturing imagery from a UAV, because the imaging sensors may not be pointed straight 

down. As Figure 2 illustrates, this means that the location of the device and the location 

of the image center could be somewhat different. This introduces the need for some way 

to measure the tilt and orientation of the imaging sensors. GPS devices offer some 
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orientation information, and a 

device called an “accelerometer” 

can provide tilt information.  

GPS and accelerometer 

devices each have limitations. GPS 

orientation is determined by 

direction of motion, rather than 

relation to Magnetic North. This 

means that if the device is facing a 

different direction than it is 

travelling, it will erroneously report 

that it is facing in the direction of 

travel. An accelerometer measures 

the acceleration forces to which it is exposed. If it is traveling at a constant speed and 

direction, then the data it produces can be used to calculate the angle of tilt, although 

these calculations are quite complicated. Unfortunately, UAV flight rarely involves 

constant speed and direction, and any course corrections, jostling from wind currents, or 

elevation adjustments will reduce the accuracy of the tilt measurements. The result is that 

conditions that improve the accuracy of one device will reduce the accuracy of the other. 

Despite these limitations, pairing the GPS and accelerometer sensors seemed to be the 

best way to gather data, and it was hoped that the image location could be calculated to 

an acceptable level of precision. 

The NNU Computer Science Department had recently purchased GPS and 

 

Figure 2.  Triangulation Problem 
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accelerometer devices manufactured by Microstack, so these were appropriated for this 

project. Unfortunately, these were found to be difficult to configure for the Raspberry Pi 

development board. The Microstack devices were designed to be compatible with 

previous versions of Raspberry Pi, and updated configuration information was not readily 

available. Adafruit Industries offered similar devices that were specified as being 

compatible with the Raspberry Pi 3B. These were ordered and successfully connected 

following the documentation provided by Adafruit. 

The difficulty in calculating tilt in three dimensions (3D) was much more 

significant than anticipated, but the NNU Mathematics Department generously offered 

help and support. Before this solution had been pursued for very long, Professor Dale 

Hamilton was told of a device called an “absolute orientation board” (AOB). This device 

has an array of sensors and performs several calculations on-board, allowing it to capture 

orientation to Magnetic North and the 3D angle of tilt, among other interesting data. 

Replacing the accelerometer with the AOB would remove the need to calculate 3D 

orientation in software and would overcome the shortcomings of the GPS orientation. An 

AOB was purchased from Adafruit. 

The AOB introduced a new challenge in the development of the project as it 

needed to be connected to the same general purpose input/output (GPIO) pins as the GPS 

device. Adafruit offered a USB adapter that works with the GPS board, but this was 

unacceptable because using the adapter would require including an external cable. No 

other alternative was found, so a switching device was proposed. This device would 

utilize a small microcontroller to rapidly switch between the GPS and AOB devices, 

similar to the function of the camera multiplexer. Unfortunately, the project developer 
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had no prior experience with embedded systems, so preparing a microcontroller to serve 

this function required a large, unexpected investment of time. A kit supplied by Adafruit 

was assembled to facilitate programming a microcontroller, and an adapter was designed 

and assembled for use with the selected microcontroller. When development of the 

microcontroller solution was nearly complete, a suitable adapter board was found that, 

with some modification, could be installed without external cables. In the interest of time, 

and to minimize the difficulty of replicating the project, the microcontroller solution was 

abandoned and the adapter was specified. 

Because the Raspberry Pi is actually a small computer, it must be shut down 

before disconnecting the power supply, which means that simply switching a battery can 

require approximately 60 seconds for the system to shut down and restart. When this 

happens, power to the GPS sensor is also lost and upon restart, the GPS device will often 

take 90 seconds or more to reacquire a sufficient signal. Two-and-a-half minutes is an 

unacceptably long time requirement for simply switching batteries, so a second power 

port was added to allow hot-swapping of power supplies. 

Connections between hardware components were accomplished by means of 

soldering or using jumper-wire connections. While these connectors add a small amount 

of weight and take up additional space, they allow for easy replacement or rearrangement 

of components, and they facilitate temporary disconnection for troubleshooting purposes. 

At this point, all the specified components had been installed and were working 

together. Through some experimentation, a suitable case design was established, and a 

model created using RhinoCAD drafting software. The case was then fabricated using 

one of NNU’s 3D printers. 
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Software Development 

 The programming language selected for developing the device control software 

was Python 3. The user interface (UI) is simply a local webpage written in the ubiquitous 

Hypertext Markup Language (HTML), and the configuration file is an Extensible Markup 

Language (XML) document. Taken together, these three files are a very simple 

application of the Model-View-Controller (MVC) software architecture. The current 

version of the FourEyes code (March, 2017) can be found in the appendices. 

User Interface 

 The UI is the user’s access point to the control software: the “view” in the MVC 

design scheme. It is intended to offer the user a simple way to adjust the device options 

and trigger the data capture sequence. Using a local webpage for the UI offers several 

advantages. Most importantly, 

a webpage will be supported 

by almost any device, 

allowing users to control the 

system with whatever device 

they choose. Another 

consideration is the ease of 

developing a webpage as 

compared to writing an 

application to perform the 

same function. Additionally, 

web-style interfaces will be 

 

Figure 3.  FourEyes User Interface 
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familiar to most users, allowing them to understand how to interact with the UI without a 

lot of prompts or training (see Figure 3.  FourEyes User Interface). 

 When the UI loads, it accesses the last-used settings, which are stored in the 

configuration file. Any changes the user makes are written to the configuration file and 

used as instructions for the device software. 

Configuration File 

 The configuration file stores the adjustable parameters of the system. It is the 

“controller” in the MVC architecture. Most of the settings stored here are the user 

preferences, which are adjusted using the UI. However, any data that needs to be stored 

by the device software between flights would be written here as well. When the user 

triggers the data capture sequence, the device software looks up the control parameters in 

the configuration file. 

 Using the XML format for the configuration file offers a couple of advantages. 

Many modern programming languages offer libraries or programming interfaces to 

access and to write to XML documents, making the configuration file easily accessible to 

both the UI and the device software. Also, a major feature of XML is that it is 

“extensible.” In simple terms, this means that changes and improvements can be made to 

an XML document without necessarily requiring any change to the programs that access 

the file. This is useful because it allows features to be added and tested without 

modifying the whole system.  

Device Software 

 The device software does the work of triggering the various sensors and 

aggregating the data they return. Perhaps a little confusingly, the software that controls 
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the device is the “model” portion of the MVC framework. When the user triggers the data 

capture sequence, the device software looks up the appropriate settings in the 

configuration file and uses them to schedule the sequence. 

 This software was written in Python primarily because Python is a convenient 

language for development. It is broadly accepted and supported by a large user base, and 

most of its syntax and conventions are easy to use and read. Python is also a language 

that is widely used by the Raspberry Pi user base. Conveniently, Python happens to be 

the language in which the Adafruit device interfaces are written, which greatly simplifies 

the interaction with the device software. 

 The main drawback to using Python is that Python code executes more slowly 

than many others because it is evaluated as it runs, rather than being a compiled 

language. For device control, the slightly slower execution can create issues when trying 

to access multiple sub-systems as nearly simultaneously as possible. This issue is most 

noticeable when trying to switch quickly between the two imaging sensors.  

The device software must complete two different repetitive tasks: data logging 

and image acquisition. These happen on different schedules, and the frequency of image 

acquisition must be allowed to vary even within a single acquisition flight without 

significantly impacting the frequency of data logging. For instance, under certain 

conditions, an image capture could be delayed for several seconds, but logging should 

continue. In this system, the user may choose to capture images based on distance or 

speed, rather than time, so it is not appropriate to use a strict timer-model to trigger data 

logging and image acquisition. Instead, FourEyes uses an “earliest opportunity” model 

for data capture. The earliest opportunity model, illustrated in Figure 4.  Earliest 
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Opportunity Model Flowchart, defines milestones that, when passed, give permission to a 

data capture event. On completion of that event, a new milestone is defined. If a 

milestone has not been reached for a certain event, or if the capture event must be 

postponed, the software proceeds to evaluate milestones for other events and retries the 

initial event again at the next opportunity. In this way, the data is not captured on a strict 

schedule, but at the earliest appropriate opportunity. This provides significant flexibility 

to the data capture process. 

 The primary reason that image capture might be delayed is high angular velocity 

(rotational speed) of the device. 

The system attempts to take two 

images as nearly simultaneously 

as possible, but a slight delay in 

both the software and the 

hardware create a brief interval 

between the capture of each 

image. If the UAV is turning 

during an image capture 

sequence, the two images will 

not align well. Fortunately, this 

project adopted the AOB, which 

calculates angular velocity. If an 

image capture milestone is reached, but high angular velocity is detected, the image 

capture is postponed. 

 

Figure 4.  Earliest Opportunity Model Flowchart 
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 For each data log milestone, flight data is captured. Some of this data provides a 

record of the flight path and flight conditions; other data is used to determine if a 

milestone has been reached. When an image capture milestone is reached, and when 

flight and device conditions allow, the RGB and NIR sensors are triggered and the 

images are captured and saved to file. At that point an additional record is entered in the 

log to indicate the location and conditions when the photos were taken. 

Results 

 After an acquisition flight is complete, the images and flight data are uploaded to 

the FireMAP system, and the location and orientation data are used to overlay the images 

accurately on a map in an orthomosaic. Of the two images captured by FourEyes, one is 

RGB and the other is NIR+GB. A pair of images is shown in Figure 5.  RGB and 

NIR+GB compared. The NIR from one image can be compared to the red from the other 

image for true NDVI calculation. Since both images have the green and blue bands, this 

data can be compared to ensure accurate alignment of the two images. Once aligned, 

FireMAP has the option to treat each of the four reflectance bands as a separate map 

layer, or to convert the image into a single four-band image. Images from multiple 

acquisition flights can be “stitched” together to represent large areas of contiguous data. 

   

Figure 5.  RGB and NIR+GB compared 
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 In addition to helping locate the images, the data collected in the logfile can 

provide FireMAP information about the conditions in which the images were captured. 

The data in the logfile can also help FireMAP analyze and flight anomalies and provide 

an accurate record of the flightpath. A sample data log is shown in Figure 6. 

Future Development 

There are several areas in which the FourEyes system could be improved, refined, 

or extended. On the hardware side, the device could be made lighter. One option for 

doing this is to modify the Raspberry Pi 3B board itself to remove unnecessary physical 

components. Another option to explore is the new Raspberry Pi Zero W, which, unlike 

the previous version, has Wi-Fi on-board. Improving the sensor-wire connector system 

could slightly reduce weight, but more importantly, it would make the cabling more 

organized and easier to connect and disconnect when needed. 

 On the software side, there are several possible improvements as well. Rewriting 

the device software in the C programming language should help it to execute more 

quickly, possibly reducing the delay between capture of image pairs. Another 

improvement that could reduce the delay would be to buffer the first image in RAM 

while taking the second photo. Currently, the system must finish saving the first image to 

disk before the second image is captured, a process that introduces a delay of 

approximately 0.2 seconds. 

 

Figure 6.  Sample Log Data 
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 In the current system design, the coordinate information for the images is only 

stored in the data log. While it is a relatively simple operation to parse that data when 

creating an orthomosaic, it might be worthwhile to have those data imbedded in the 

metadata header of the photos so that the image files would still be useful if they were 

ever separated from the data log. 

At present, the UI design has not been optimized for hand-held devices. While the 

UI webpage should be compatible with tablets and smartphones, the user may have to 

resize the webpage to interact with it. Adding Cascading Style Sheet (CSS) functionality 

to the View could enable the UI to adjust dynamically to any screen size. 

The current system configuration requires FourEyes and the user’s device to be 

connected to the same network via a router. This requires a portable router of some sort 

to be brought to the acquisition site. However, a Raspberry Pi is capable of being 

configured to serve as a router. Adding this feature to FourEyes would mean one less 

device was required on-site. After moving out of range, the FourEyes device occasionally 

has difficulty reconnecting to the router when it returns. This problem would be 

eliminated if the FourEyes device were acting as the system router. 

Conclusion 

 The FourEyes project was very challenging, and a significant amount of time was 

spent developing subsystems that were later abandoned. While individual components 

were well documented, combining them in this way created several new difficulties. 

However, the final product was a system that met all the initial project specifications and 

provided a detailed record of a data acquisition flight and pairs of images that can be 

analyzed for information that is valuable to the FireMAP project. The project should be 
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replicable by anyone with reasonable soldering skills and access to a 3D printer, and for a 

total cost of under $300, which was significantly less than commercially-available 

options. Further development of this project could produce an image acquisition system 

that is even more useful and user-friendly. 
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Appendices  

Appendix A: Website References 

Adafruit: www.adafruit.com 

Amazon: www.amazon.com 

IVMech: www.ivmech.com 

Microstack: www.microstack.org.uk 

Python: www.python.org  

Raspberry Pi Foundation: www.raspberrypi.org 

RhinoCAD: www.rhino3d.com 
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Appendix B: Parts List and Sources 

Absolute Orientation Board: Adafruit. www.adafruit.com/product/2472 

Device Case: Printable using file at http://github.com/poxley/4eyes  

Multiplexer: Amazon: http://a.co/fXk9AWR   

Raspberry Pi 3B: Adafruit. www.adafruit.com/product/3055 

Raspberry Pi Camera Rev 1.3: Amazon. http://a.co/7bwhFnv 

Raspberry Pi NoIR Camera Rev 1.3: Amazon. http://a.co/aA09s46 

(NOTE: v2.1 cameras not compatible with multiplexors)  

Ultimate GPS Board: Adafruit: www.adafruit.com/product/746 

USB Micro-B Board: Adafruit: www.adafruit.com/product/1833 

USB to Serial Adapter: Amazon: http://a.co/a1FWGcN  

Also required are generic jumpers, headers, and miscellaneous components 

 

Hardware Options to Explore 

Arducam Milti Camera Adapter Board: Amazon. http://a.co/3sqh2dj  

Raspberry Pi 3B component reduction: lifehacker. https://goo.gl/sUkGwM  

Raspberry Pi Zero W: Adafruit. www.adafruit.com/product/3400  

I2C to UART Bridge: Sandbox Electronics. https://goo.gl/ss9vZG  
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Appendix C: User Interface 

More recent version may be available at http://github.com/poxley/4eyes 

<!DOCTYPE html> 

<!-- 4eyes User Interface --> 

<html> 

<h1>FourEyes User Preferences</h1> 

    <form name="UI" method="POST" action=""> 

  

     <fieldset> 

      <legend>Start delay:</legend> 

      <input type="radio" name="delay" value="altitude" checked> 

altitude: Delay sequence until n meters above START<br> 

      <input type="radio" name="delay" value="distance"> 

distance: Delay sequence until n meters away from START<br> 

      <input type="radio" name="delay" value="time"> time: Delay 

sequence until n seconds after START<br> 

      n = <input type="number" name="delayValue"> 

     </fieldset> 

         

        <fieldset> 

         <legend>Capture trigger:</legend> 

         <input type="radio" name="trigger" value="distance" 

checked> distance: Capture image every n meters<br> 

         <input type="radio" name="trigger" value="speed"> speed: 

Capture image when UAV drops belonw n meters per second<br> 

         <input type="radio" name="trigger" value="time"> time: 

Capture image every n seconds<br> 

         n = <input type="number" name="triggerValue"> 

        </fieldset> 

 

        <fieldset> 

         <legend>Termination condition:</legend> 

         <input type="radio" name="termination" value="altitude" 

checked> altitude: Terminate sequence when UAV returns to within n 

meters above START<br> 

         <input type="radio" name="termination" value="frames"> 

frames: Terminate sequence after capturing n frames<br> 

         <input type="radio" name="termination" value="time"> time: 

Termiate sequence after n seconds<br> 

         n = <input type="number" name="terminateValue"> 

        </fieldset> 

 

        <fieldset> 

         <legend>Maximum rotational velocity:</legend> 

         degrees: Delay frame if UAV is rotating faster than n 

degrees per second<br> 

         n = <input type="number" name="rotationValue"> 

     </fieldset> 

 

     <fieldset> 

      <legend>Log frequency:</legend> 

      time: Record and log data every n seconds<br> 

      n = <input type="number" name="logFrequencyValue"> 

     </fieldset> 



  
 

22 
 

 

     <fieldset> 

      <legend>Directory:</legend> 

      location: Save log and images<br> 

      <input type="text" name="filepathValeu"> 

  </fieldset> 

 

  <br> 

  <input type="submit" id="submitbtn" value="START"> 

 </form> 

</html> 
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Appendix D: Configuration File 

More recent version may be available at http://github.com/poxley/4eyes 

<?xml version="1.0" encoding="UTF-8"?> 

<!-- 4eyes Configuration File --> 

 

<settings> 

  

 <!-- Wait to begin photo sequence --> 

 <setting category="delay"> 

  <type>time</type> <!-- altitude: meters, distance: meters, 

time: seconds --> 

  <value>30</value> 

  <options> 

   <option>altitude</option> 

   <option>distance</option> 

   <option>time</option> 

  </options> 

 </setting> 

  

 <!-- When to take a photo --> 

 <setting category="trigger"> 

  <type>time</type> <!-- distance: meters, speed: 

meters/second, time: seconds --> 

  <value>10</value> 

  <options> 

   <option>distance</option> 

   <option>speed</option> 

   <option>time</option> 

  </options> 

 </setting> 

  

 <!-- How long to keep taking photos --> 

 <setting category="termination"> 

  <type>frames</type> <!-- altitude: meters, frames: 

quantity, time: seconds --> 

  <value>30</value> 

  <options> 

   <option>altitude</option> 

   <option>frames</option> 

   <option>time</option> 

  </options> 

 </setting> 

 

 <!-- Maximum rotational velocity --> 

 <setting category="rotation"> 

     <type>degrees</type> <!-- degrees/second --> 

     <value>30</value> 

     <options> 

      <option>time</option> 

     </options> 

    </setting> 

 

    <!-- Log frequency --> 

    <setting category="log_frequency"> 
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        <type>time</type> <!-- seconds --> 

        <value>5</value> 

        <options> 

         <option>time</option> 

        </options> 

    </setting> 

 

    <!-- Storage location --> 

    <!-- Placeholder for future work: --> 

    <!-- Field to select file storage location --> 

  

</settings>  
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Appendix E: Device Control 

More recent version may be available at http://github.com/poxley/4eyes 

# #!/usr/bin/python 

 

# 4Eyes Control Software: 4eyes.py 

# Capture NIR+RGB images with Raspberry Pi 

# Copyright (c) 2017 Peter Oxley -- poxley@nnu.edu 

# Developed for NNU FireMAP and Professor Dale Hamilton M.S. 

 

# Imports 

import sys 

import time 

import datetime 

import picamera 

import os 

import gps 

from geopy.distance import vincenty 

from Adafruit_BNO055 import BNO055 

import RPi.GPIO as gp 

import xml.etree.ElementTree as et 

 

 

############################################# 

# Function: setCam() 

# Parameters: cam, the desired camera 

# Returns: current camera 

# Description: sets GPIO condition 

# By: Oxley 

############################################# 

def setCam(cam): 

    if cam == 2: 

        gp.output(CAM_SELECT_PIN, True) 

        return 2 

    else: 

        gp.output(CAM_SELECT_PIN, False) 

        return 1 

 

 

############################################# 

# Function: swapCam() 

# Parameters: cam, the current camera 

# Returns: (new) current camera 

# Description: set the correct GPIO pins to switch cameras 

# By: Oxley 

############################################# 

def swapCam(cam): 

    if cam == 1: 

        gp.output(CAM_SELECT_PIN, True) 

        return 2 

    else: 

        gp.output(CAM_SELECT_PIN, False) 

        return 1 
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############################################# 

# Function: delay() 

# Parameters: none 

# Returns: continue to delay (T/F) 

# Description: determine if user delay requirement has been met 

# By: Oxley 

############################################# 

def delayStart(stats): 

    if DELAY_TYPE == 'distance': 

        if (distanceFrom(START_LATITUDE, START_LONGITUDE, stats[2], 

stats[3]) < DELAY_VALUE): 

            return True 

        else: 

            return False 

    elif DELAY_TYPE == 'altitude': 

        if (stats[4] < START_ALTITUDE + DELAY_VALUE): 

            return True 

        else: 

            return False 

    elif DELAY_TYPE == 'time': 

        if (currentTime() < START_TIME + 

datetime.timedelta(seconds=(int(DELAY_VALUE)))): 

            return True 

        else: 

            return False 

 

 

############################################# 

# Function: initializeGPS 

# Parameters: none 

# Returns: start conditions for program constants 

# Description: wait until all startup data is available from GPS, 

#   use to set constants and clock 

# By: Oxley 

############################################# 

def initializeGPS(): 

    initFlag = 0 

    startAlt, startLat, startLon = 0.0, 0.0, 0.0 

    while initFlag < 4: 

        if VERBOSE_OUTPUT: 

            print(str(currentTime()) + " Waiting for GPS to 

initialize") 

        initFlag = 0 

        gpsReport = gpsSession.next() 

        if gpsReport['class'] == 'TPV': 

            if hasattr(gpsReport, 'alt'): 

                startAlt = gpsReport.alt 

                initFlag += 1 

            if hasattr(gpsReport, 'lat'): 

                startLat = gpsReport.lat 

                initFlag += 1 

            if hasattr(gpsReport, 'lon'): 

                startLon = gpsReport.lon 

                initFlag += 1 

            if hasattr(gpsReport, 'time') and initFlag == 3: 

                os.system("sudo timedatectl set-time " + 

gpsReport.time) 
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                initFlag += 1 

        if initFlag < 4: 

            time.sleep(1) 

    setupData = (startAlt, startLat, startLon) 

    return (setupData) 

 

 

############################################# 

# Function: terminate() 

# Parameters: frame, the current frame sequence number 

# Returns: terminate now (T/F) 

# Description: determine if capture sequence is complete 

# By: Oxley 

############################################# 

def terminate(stats, frame, sequenceStartTime): 

    if TERMINATION_TYPE == 'altitude': 

        if (stats[4] < START_ALTITUDE + TERMINATION_VALUE): 

            return True 

        else: 

            return False 

    elif TERMINATION_TYPE == 'frames': 

        quantity = TERMINATION_VALUE 

        if quantity > frame: 

            return True 

        else: 

            return False 

    elif TERMINATION_TYPE == 'time': 

        if (sequenceStartTime + TERMINATION_VALUE < currentTime()): 

            return True 

        else: 

            return False 

 

 

############################################# 

# Function: updateTermFlag() 

# Parameters: stats, a list 

# Returns: eligible for termination (T/F) 

# Description: routine is not eligible for termination until 

termination altitude is exceeded 

# By: Oxley 

############################################# 

def updateTermFlag(stats): 

    if TERMINATION_TYPE == 'altitude': 

        if (stats[4] > START_ALTITUDE + TERMINATION_VALUE): 

            return True 

        else: 

            return False 

    else: 

        return True 

 

 

############################################# 

# Function: captureOne() 

# Parameters: frame, the current frame sequence number; camera, the 

selected camera 

# Returns: none 

# Description: capture single image from selected camera 
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# By: Oxley 

############################################# 

def captureOne(frame, cam): 

    prefix = fileName() 

    if cam == 1: 

        spectrum = 'RGB' 

    else: 

        spectrum = 'NIR' 

    yield (prefix + '%s%03d.jpg' %(spectrum, frame)) 

 

 

############################################# 

# Function: captureImages() 

# Parameters: frame, the current frame sequence number 

# Returns: frame count 

# Description: trigger sub-function (captureOne()) 

# By: Oxley 

############################################# 

def captureImages(frame): 

    # cam = setCam(1) 

    for j in range(1, 3): 

        time.sleep(0.01)  # adjust depending on actual latency 

        cam = setCam(j) 

        time.sleep(0.01)  # adjust depending on actual latency 

        # for camera.capture_sequence function (below) 

        # "yield" command *must* appear within the called function, 

        # cannot be called in sub-function. 

        camera.capture_sequence(captureOne(frame, cam), 

use_video_port=True) 

    return 

 

 

############################################# 

# Function: distanceFrom(lat, lon) 

# Parameters: lat and lon: a set of coordinates 

# Returns: euclidean distance 

# Description: takes lat an lon of some point and calculates distance 

from current location 

# By: Oxley 

############################################# 

def distanceFrom(startLat, startLon, endLat, endLon): 

    here = (endLat, endLon) 

    there = (startLat, startLon) 

    return abs(vicenty(here, there).meters) 

 

 

############################################# 

# Function: fileName() 

############################################# 

def fileName(): 

    return ('{:%y%m%d_%H%M}'.format(datetime.datetime.now())) 

 

 

############################################# 

# Function: getStats() 

# Parameters: none 

# Returns: list of stats from GPS and AOB 
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# Description: poll GPS and AOB, parse results for desired data, return 

data as a list 

# By: Oxley 

############################################# 

def getStats(): 

    curTime, curLat, curLon, curAlt, curAgl, curClimb, curSpeed, 

curSats, curEpx, curEpy, curEpv, curTrack, curHead, curRoll, curPitch, 

currAngVel = "na", "na", "na", "na", "na", "na", "na", "na", "na", 

"na", "na", "na", "na", "na", "na", "na" 

    curImg = 'n' 

    statsReport = gpsSession.next() 

    if statsReport['class'] == 'TPV': 

        if hasattr(statsReport, 'time'): 

            curTime = statsReport.time 

        if hasattr(statsReport, 'lat'): 

            curLat = statsReport.lat 

        if hasattr(statsReport, 'lon'): 

            curLon = statsReport.lon 

        if hasattr(statsReport, 'alt'): 

            curAlt = statsReport.alt 

        if hasattr(statsReport, 'climb'): 

            curClimb = statsReport.climb 

        if hasattr(statsReport, 'speed'): 

            curSpeed = statsReport.speed 

        if hasattr(statsReport, 'epx'): 

            curEpx = statsReport.epx 

        if hasattr(statsReport, 'epy'): 

            curEpy = statsReport.epy 

        if hasattr(statsReport, 'epv'): 

            curEpv = statsReport.epv 

        if hasattr(statsReport, 'track'): 

            curTrack = statsReport.track 

    if statsReport['class'] == 'SKY': 

        if hasattr(statsReport, 'satellites'): 

            rprtSatellites = statsReport.satellites 

            satCount = 0 

            curSats = 0 

            for sat in rprtSatellites: 

                satCount += 1 

                if sat.used: 

                    curSats += 1 

    curHead, curRoll, curPitch = bno.read_euler() 

    xVel, yVel, zVel = bno.read_gyroscope() 

    curAngVel = max(xVel, yVel, zVel) 

    if curAlt != 'na': 

        curAgl = curAlt - START_ALTITUDE 

    stats = [curTime, curImg, curLat, curLon, curAlt, curAgl, curClimb, 

curSpeed, curSats, curEpx, curEpy, curEpv, curTrack, curHead, curRoll, 

curPitch, curAngVel] 

    return stats 

 

 

############################################# 

# Function: imageMilestoneReached() 

# Parameters: stats (a list), lastMilestone (previous successful 

milestone) 

# Returns: true or false 
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# Description: determine if current conditions indicate images should 

be captured 

# By: Oxley 

############################################# 

def imageMilestoneReached(stats, lastMilestone, recentSpeed): 

    if TRIGGER_TYPE == 'distance': 

        startLat, startLon = lastMilestone 

        if (distanceFrom(startLat, startLon, stats[2], stats[3]) < 

TRIGGER_VALUE): 

            return False 

        else: 

            return True 

    elif TRIGGER_TYPE == 'speed': 

        if (stats[7] < recentSpeed and stats[7] < TRIGGER_VALUE): 

            return True 

        else: 

            return False 

    elif TRIGGER_TYPE == 'time': 

        # reformat lastMilestone into datetime 

        milestoneDT = datetime.datetime.strptime(lastMilestone, '%Y-%m-

%dT%H:%M:%S.%fz') 

        elapsedTime = currentTime() - milestoneDT 

        mins, secs = divmod(elapsedTime.seconds, 1000) 

        if (secs < TRIGGER_VALUE): 

            return False 

        else: 

            return True 

 

 

############################################# 

# Function: updateImageMilestone() 

# Parameters: stats (a list) 

# Returns: new milestone 

# Description: provides correct milestone based on image trigger from 

.cfg file 

# By: Oxley 

############################################# 

def updateImageMilestone(stats, oldMilestone): 

    newMilestone = oldMilestone 

    if TRIGGER_TYPE == 'distance': 

        newMilestone = (stats[2], stats[3]) 

    elif TRIGGER_TYPE == 'speed': 

        newMilestone = oldMilestone 

    elif TRIGGER_TYPE == 'time': 

        newMilestone = (stats[0]) 

    return newMilestone 

 

 

############################################# 

# Function: currentTime() 

############################################# 

def currentTime(): 

    return datetime.datetime.now() 

 

 

############################################# 

# Function: writeLogHeader() 
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# Parameters: none 

# Returns: none 

# Description: write column headers in logfile 

# By: Oxley 

############################################# 

def writeLogHeader(): 

    columns = ("{0:>8}, {1:>3}, {2:>13}, {3:>13}, {4:>6}, {5:>6}, 

{6:>5}, {7:>5}, {8:>4}, {9:>4}, {10:>4}, {11:>4}, {12:>5}, {13:>5}, 

{14:>4}, {15:>5}, {16:>3}").format( 

        "time", "img", "lat", "lon", "alt", "agl", "climb", "speed", 

"sats", "epx", "epy", "epv", "track", "head", 

        "roll", "pitch", ">v") 

    LOG_FILE.write(columns) 

    return 

 

 

############################################# 

# Function: writeLog() 

# Parameters: stats (a list) 

# Returns: none 

# Description: get list of PGS and AOB data and write to file 

# By: Oxley 

############################################# 

def writeLog(stats): 

    columns = ( 

    "{0:>8}, {1:>3}, {2:>13.8}, {3:>13.8}, {4:>6.2}, {5:>6.2}, 

{6:>4.2}, {7:>4.2}, {8:>3}, {9:>4.2}, {10:>4.2}, {11:>4.2}, {12:>5.2}, 

{13:>5.2}, {14:>4.1}, {15:>4.1}, {16:>3.1}").format( 

        stats[0], stats[1], stats[2], stats[3], stats[4], stats[5], 

stats[6], stats[7], stats[8], stats[9], stats[10], stats[11], 

        stats[12], stats[13], stats[14], stats[15], stats[16]) 

    LOG_FILE.write(columns) 

    return 

 

 

############################################# 

# Function: main() 

# Parameters: none 

# Returns: 

# Description: main function 

# By: Oxley 

############################################# 

def main(): 

    writeLogHeader() 

    # create a list to handle stats from GPS and AOB 

    stats = getStats() 

    #  Wait for start condition to evaluate true 

    while delayStart(stats) is True: 

        time.sleep(0.2) 

 

    # initialize cameras 

    with picamera.PiCamera() as camera: 

        camera.start_preview() 

        # set control variables 

        terminationEligible = False 

        recentSpeed = 0.0 

        frame = 1 
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        imageMilestone = 0 

        logMilestone = START_TIME 

        sequenceStartTime = currentTime() 

 

        while (terminationEligible is False or terminate(stats, frame, 

sequenceStartTime) is False): 

            stats = getStats() 

            if imageMilestoneReached(stats, imageMilestone, 

recentSpeed) and stats[16] < MAX_ROTATIONAL_VELOCITY: 

                captureImages(frame) 

                stats[1] = frame 

                writeLog(stats) 

                imageMilestone = updateImageMilestone(stats, 

imageMilestone) 

                logMilestone = currentTime() 

                frame += 1 

            elif (currentTime() > logMilestone + 

datetime.timedelta(seconds=LOG_INTERVAL)): 

                writeLog(stats) 

                logMilestone = currentTime() 

            if terminationEligible is False: 

                terminationEligible = updateTermFlag(stats) 

            recentSpeed = stats[7] 

 

    writeLog(stats) 

    return 

 

 

############### BEGIN #################### 

# GPIO setup 

CAM_SELECT_PIN = 17 

AOB_RESET_PIN = 18 

gp.setwarnings(False) 

gp.setmode(gp.BCM) 

gp.setup(CAM_SELECT_PIN, gp.OUT) 

gp.output(CAM_SELECT_PIN, False) 

# GPS setup 

os.system("sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock") 

gpsSession = gps.gps("localhost", "2947") 

gpsSession.stream(gps.WATCH_ENABLE | gps.WATCH_NEWSTYLE) 

# AOB setup 

bno = BNO055.BNO055(serial_port='/dev/ttyAMA0', rst=AOB_RESET_PIN) 

if not bno.begin(): 

    raise RuntimeError('Failed to initialize AOB') 

# access config file 

tree = et.parse('4eyes.cfg') 

settings = tree.getroot() 

 

# CONSTANTS 

VERBOSE_OUTPUT = True 

# get initial conditions 

START_ALTITUDE, START_LATITUDE, START_LONGITUDE = initializeGPS() 

START_TIME = currentTime() 

DELAY_TYPE = settings[0][0].text  # altitude, distance, time 

DELAY_VALUE = settings[0][1].text 

TRIGGER_TYPE = settings[1][0].text  # distance, speed, time 

TRIGGER_VALUE = settings[1][1].text 
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TERMINATION_TYPE = settings[2][0].text  # altitude, frames, time 

TERMINATION_VALUE = settings[2][1].text 

MAX_ROTATIONAL_VELOCITY = settings[3][1].text # delay imaging if 

rotating too fast 

LOG_INTERVAL = settings[4][1].text # write log every n seconds 

DATA_LOCATION = ""  # will want to get this from cfg file user select 

LOG_FILE = open(DATA_LOCATION + fileName() + "log.txt", "w") 

 

main() 

 

LOG_FILE.close() 

gp.output(11, False) 

 

exit() 


